CASE STUDY: BUILDING A SECURE AND RELIABLE IPv6 GUEST WIFI NETWORK

Christopher Werny, cwerny@ernw.de
Network Overview

- Network diagram
- Components
- Monitoring Infrastructure
- NAT64, implementation details
Network Design Overview

netmon.troopers.de
(Network Monitor)
Important Rule to keep in mind when building a wireless network:

- The network is primarily radios, and only secondarily digital,
- The 2,4GHz band is shared with other equipment like
 - cordless phones,
 - cordless microphones
 - Bluetooth
General Notes On Conference WLANs

Do a site survey to find out what the situation is!

- Find the network and power jacks in your area.
- Are there other WiFi signals in the area, and on what channels are they?
- Looking for interference in the area.
- Think about which effect walls or other moveable partitions have on your Signal.
- Bring an AP with you to plug in and find out where you can hear it.
- Encourage the use of 5 GHz channels.
- Turn power down on 2.4 GHz to allow for more access points without overlapping footprints.
- Run DHCP on a central server.
 - This allows access points to act as bridges for mobile devices to roam from one AP to another without having to get new IP addresses.
General Notes On Conference WLANs

some useful advices

- Disable slow speeds.
 - If you can disable the 802.11b entirely
 - If you can control what devices are in use and make sure they are all 802.11n capable, you can disable 802.11g as well.

- Disable connection tracking. Connection tracking can be a very significant overhead on the CPU and RAM of the AP.

- Set short inactivity timers to avoid APs spending resources on trying to track devices that have moved or been turned off.

- With hundreds to thousands of users, you will never have enough Internet bandwidth to satisfy everyone.
 - ACLs, QoS, Proxy
Network Overview

Devices

- Gateway (Dual-Stack)
 - Cisco ASR 1002 running Cisco IOS Software, IOS-XE Software PPC_LINUX_IOSD-ADVENTERPRISEK9-M), Version 15.2(4)S1
Network Overview

Devices

- WLCs
 - Cisco 2504 running
 Product Version..... 7.4.121.0
 - Cold-Standby
Access Points
Cisco 1242 & 1602 models
Goals:
- Traffic overview
- Split into IPv4 and IPv6
- How many clients in total
- How many IPv4 only or Dual-Stack or IPv6 only clients are active
- WLAN usage overview
 - 802.11b, 802.11g, and 802.11n on 2.4GHz band
 - 802.11a and 802.11n on 5GHz band
Monitoring Infrastructure

- Linux with a webservice and some dirty Scripts ;)
 - Details later on
- Monitoring system c3netmon
 - customized to achieve our goals
 - https://github.com/FremaksGmbH/c3netmon-public
- Collecting information via SNMPv3
NAT64 & DNS64

- Unbound on FreeBSD for DNS64
 - https://github.com/Flast/unbound-dns64
 - Version 1.4.20

- Stateful NAT64 implemented on ASR 1002
Unbound is installed as part of the base system in FreeBSD since version 10.0.

It is a DNS server designed for high-performance.

The Ecdysis Project (open-source implementation of NAT64) released a patch for support of DNS64 in unbound:

- http://ecdysis.viagenie.ca/instructions.html
DNS64

Unbound Version 1.4.20 with dns64 configuration

See unbound.conf(5) man page, version 1.4.20.

The server clause sets the main parameters.

server:

 # specify the interfaces to answer queries from by ip-address.
 interface: 2003:60:4010:2030::100

 # specify the interfaces to send outgoing queries to authoritative
 # server from by ip-address.
 outgoing-interface: 2003:60:4010:2030::100
 outgoing-interface: 172.20.40.22

 # Enable IPv6
do-ip6: yes
DNS64

Unbound Version 1.4.20 with dns64 configuration

module configuration of the server.
A string with identifiers separated by spaces.
module-config: "dns64 iterator"

DNS64 prefix. Must be specified when
DNS64 is in use.
dns64-prefix: 2003:60:4010:6464::/96
interface GigabitEthernet0/0/0
<output omitted>
description ===WAN===
ip address 10.10.10.1 255.255.255.0
ipv6 enable
no ipv6 redirects
nat64 enable

interface GigabitEthernet0/0/1.30
<output omitted>
description ===TRP-NAT64===
encapsulation dot1Q 30
ipv6 address FE80::1 link-local
ipv6 address 2003:60:4010:2030::1/64
nat64 enable
ipv6 dhcp pool NAT64
dns-server 2003:60:4010:2030::100
domain-name troopers.net

ipv6 access-list nat64-acl
permit ipv6 any 2003:60:4010:6464::/96

nat64 prefix stateful 2003:60:4010:6464::/96

nat64 v4 pool nat64-pool 10.10.10.3
10.10.10.254

nat64 v6v4 list nat64-acl pool nat64-pool
overload
Basic Connectivity Test

Approximate round trip times in milli-seconds:
Minimum = 40ms, Maximum = 151ms, Average = 77ms

C:\Users\sMk> ping www.ipspace.net -t
Pinging www.ipspace.net [2003:60:4010:6464::c16e:9134] with 32 bytes of data:
Reply from 2003:60:4010:6464::c16e:9134: time=174ms
Reply from 2003:60:4010:6464::c16e:9134: time=214ms
Ping statistics for 2003:60:4010:6464::c16e:9134:
Packets: Sent = 2, Received = 2, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 174ms, Maximum = 214ms, Average = 194ms
C: \Users\sMk> ping www.cisco.com
Pinging e144.dcb.akamaiedge.net [2a02:26f0:64:185::90] with 32 bytes of data:
Reply from 2a02:26f0:64:185::90: time=29ms
Reply from 2a02:26f0:64:185::90: time=37ms
Reply from 2a02:26f0:64:185::90: time=79ms
Reply from 2a02:26f0:64:185::90: time=33ms
Ping statistics for 2a02:26f0:64:185::90:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 23ms, Maximum = 79ms, Average = 37ms
C:\Users\sMk>
Specifics of IPv6 in (802.11) WiFi Networks

The Multicast problem
The Multicast Problem [1]

- WLANs are a shared half-duplex: one station transmits all others must be silent.

- A multicast / broadcast transmission from an AP is physically transmitted to all WiFi clients.

- No other node can use the wireless medium at that time.

- Behavior as a Ethernet hub.
IPv6 Multicast Use [2]

- Duplicate Address Detection.

- Router Solicitations.

- Router Advertisements.
 - One multicast RAs every [RA interval] seconds * one solicited RA per host joining the network

- Neighbor solicitations.
Different wireless clients may use different transmission encodings and data rates.

A lower data rate effectively locks the medium for a longer time per bit.

AP is constrained to transmit all multicast or broadcast frames at the lowest rate possible.
IPv6 Multicast Use

- Often translated to rates as low as 1 Mbps or 6 Mbps, even when the rate can reach a hundred of Mbps and above.

- Sending a single multicast frame can consume as much bandwidth as dozens of unicast frames.
<table>
<thead>
<tr>
<th>Lowest WiFi rate</th>
<th>Highest WiFi rate</th>
<th>Moast frame %-age</th>
<th>WiFi Utilization by Mcast</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Mbps</td>
<td>11 Mbps</td>
<td>1 %</td>
<td>9 %</td>
</tr>
<tr>
<td>6 Mbps</td>
<td>54 Mbps</td>
<td>1 %</td>
<td>9 %</td>
</tr>
<tr>
<td>6 Mbps</td>
<td>54 Mbps</td>
<td>5 %</td>
<td>45 %</td>
</tr>
<tr>
<td>6 Mbps</td>
<td>54 Mbps</td>
<td>10 %</td>
<td>90 %</td>
</tr>
</tbody>
</table>

WiFi Utilization by Multicast [1]
Acknowledgements

- No acknowledgement mechanism (ARQ).

- Frames can be missed and NDP does not take this packet loss into account.

- Could have a negative impact for Duplicate Address Detection (DAD)
WiFi Error Rate

- Assuming a error rate of 8% of corrupted frame.
- 8% chance of loosing a complete frame.
- 16% chance of not detecting a duplicate address.
Host Sleep Mode

- Host wakes up and sends multicast Router Solicitation.

- Triggers a Router Advertisement message from all adjacent routers.

- Duplicate Address Detection for its link-local and global addresses.

- Transmitting at least two multicast Neighbor Solicitation messages.

- Repeated by the AP to all other WiFi clients.
IPv6 Multicast Use

- Multicast Router Solicitation from the WiFi client, received by the AP and broadcasted again over the wireless link if not optimized.

- Multicast Neighbor Solicitation for the host LLA from the WiFi client, received by the AP and transmitted back over the wireless link if not optimized.

- Same behavior per global address.

- 6 WiFi broadcast packets plus the unicast replies on each wake-up of the device.
IPv6 Multicast

Multicast WiFi Usage by Sleeping Devices

<table>
<thead>
<tr>
<th>WiFi Clients</th>
<th>Wake-up Cycle</th>
<th>Mcast packet/sec</th>
<th>Mcast bit/sec</th>
<th>Lowest WiFi Rate</th>
<th>Mcast Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>600 sec</td>
<td>1</td>
<td>960 bps</td>
<td>1 Mbps</td>
<td>0.1 %</td>
</tr>
<tr>
<td>1000</td>
<td>600 sec</td>
<td>1</td>
<td>9600 bps</td>
<td>1 Mbps</td>
<td>1.0 %</td>
</tr>
<tr>
<td>5000</td>
<td>600 sec</td>
<td>50</td>
<td>48 kbps</td>
<td>1 Mbps</td>
<td>4.8 %</td>
</tr>
<tr>
<td>5000</td>
<td>300 sec</td>
<td>100</td>
<td>96 kbps</td>
<td>1 Mbps</td>
<td>9.6 %</td>
</tr>
</tbody>
</table>
Low Power WiFi Clients

- To save their batteries, Low Power (LP) hosts go into radio sleep mode until there is a local need to send a wireless frame.

- AP to store unicast and multicast frames.

- LP clients wake up periodically to listen to the WiFi beacon frames indicating whether there is multicast-traffic waiting.

- ALL LP hosts must stay awake to receive all multicast frames.
IPv6 Multicast [1]

Multicast WiFi Impact on Low Power Hosts

<table>
<thead>
<tr>
<th>Beacon frames/sec</th>
<th>Mcast frames/sec</th>
<th>Mcast frame size (bytes)</th>
<th>Lowest WiFi Rate</th>
<th>Awake time/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>300 bytes</td>
<td>1 Mbps</td>
<td>2.4 %</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>300 bytes</td>
<td>1 Mbps</td>
<td>3.6 %</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>300 bytes</td>
<td>1 Mbps</td>
<td>4.8 %</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
<td>300 bytes</td>
<td>1 Mbps</td>
<td>14.4 %</td>
</tr>
</tbody>
</table>
The Multicast Distribution Problem

On Controller based WiFi Networks in Cisco Space
Multicast Distribution Problem [4]

- Controller delivered multicast packets to WLAN clients by making copies.

- Forwarding packets through a unicast Lightweight Access Point Protocol (LWAPP) tunnel to each AP connected to the controller.
Depending on the number of APs, the controller might need to generate up to 300 copies of each multicast packet.

- Places a large processing burden on the controller.

- Flooding the network with a large number of duplicate unicast packets.
Beware

Take care: This “feature” DOES NOT solve the IPv6 multicast problem discussed above but just discusses WLC <-> AP multicast distribution.
Multicast Distribution Problem [4]

And how to solve it the Cisco way

- Multicast performance has been optimized, by introducing a more efficient way of delivering multicast traffic from the controller to the access points.

- LWAPP multicast group is used to deliver the multicast packet to each access point.

- Allows routers in the network to use standard multicast techniques to replicate and deliver multicast packets to the APs.
Multicast -> Multicast Distribution [4]

- Multicast packet are transmitted to the LWAPP multicast group via the management interface.

- Multicast packet are being delivered to each of the access point using the normal multicast mechanisms in the routers.
Considerations

- Multicast packets received on the VLAN from the first hop router is transmitted over the wireless network, including HSRP hellos and all router EIGRP and PIM multicast packets.

- Could seriously degrade the WLAN throughput for clients if e using millisecond hellos with HSRP on the client VLAN.
How to Reduce the Chatter of IPv6 in WiFi Networks
NDP Proxy

- Neighbor discovery caching allows the controller to act as a proxy and respond back to NS queries that it can resolve.

- Is made possible by the underlying neighbor binding table present in the controller.
IPv6 RA Throttling

Routers which are configured to send RAs very often (e.g. every 3 seconds) can be trimmed back to a minimum frequency that will still maintain IPv6 client connectivity.

- Allows airtime to be optimized by reducing the number of multicast packets that must be sent.

- If a client sends an RS, then an RA will be allowed through the controller. Ensures no negatively impact by RA throttling.
Gateway Configuration

- To reduce the multicast traffic the following parameters were adjusted:
 - Router lifetime to 9000 seconds
 - Reachable lifetime to 900 Seconds

- Inspired by Andrew Yourtchenko
 - Thank You!
interface GigabitEthernet0/0/1.10
description ===CON===
encapsulation dot1Q 10
ip address 172.20.12.1 255.255.252.0
ip access-group DENY_MGMT in
no ip redirects
no ip proxy-arp
ipv6 address FE80::1 link-local
ipv6 address 2003:60:4010:2010::1/64
ipv6 enable
ipv6 mtu 1300
ipv6 nd reachable-time 900000
ipv6 nd other-config-flag
ipv6 nd router-preference High
ipv6 nd ra lifetime 9000
no ipv6 redirects
ipv6 dhcp server CON
ipv6 traffic-filter DENY6_MGMT in
How to Properly Secure an IPv6 WiFi Network
Cisco First-Hop-Security Features on the WLC
Cisco First-Hop-Security

- Cisco term for various security features in the IPv6 space

- The WLC does support a number of features discussed below
Cisco IPv6 Snooping

- IPv6 Snooping is the basis for several FHS security mechanisms
- Used to build the security binding table on the WLC for the following FHS features
RA Guard

- Implements *isolation* principle similar to other L2 protection mechanisms already deployed in v4 world.

- RFC 6105

- Acts a stateless ACL filter for ICMPv6 type 134
DHCPv6 Guard

- Similar functionality to DHCP Snooping in the IPv4 world
 - But more sophisticated

- Blocks reply and advertisement messages that originates from “malicious” DHCP servers and relay agents

- Provides finer level of granularity than DHCP Snooping.

- Messages can be filtered based on the address of the DHCP server or relay agent, and/or by the prefixes and address range in the reply message.
IPv6 Source Guard

- Prevents a wireless client spoofing an IPv6 address of another client.
- IPv6 Source Guard is enabled by default but can be disabled via the CLI.
v6 Access Control Lists (ACLs) can be used to identify traffic and permit or deny it.

IPv6 ACLs support the same options as IPv4 ACLs including source, destination, source port, and destination port (port ranges are also supported).
FHS on WLC Controller

<table>
<thead>
<tr>
<th>FHS Feature</th>
<th>Default</th>
<th>Configurable</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA Guard</td>
<td>Enabled</td>
<td>Yes (only on AP)</td>
</tr>
<tr>
<td>DHCPv6 Guard</td>
<td>Enabled</td>
<td>No</td>
</tr>
<tr>
<td>IPv6 Source Guard</td>
<td>Enabled</td>
<td>Yes</td>
</tr>
<tr>
<td>IPv6 ACLs</td>
<td>Disabled</td>
<td>Yes</td>
</tr>
</tbody>
</table>
RA Guard Configuration

IPv6 > RA Guard

- IPv6 RA Guard on WLC: Enabled
- IPv6 RA Guard on AP: Enable

RA Dropped per client:

<table>
<thead>
<tr>
<th>MAC Address</th>
<th>AP Name</th>
<th>WLAN</th>
</tr>
</thead>
</table>
IPv6 ACL on WLC

<table>
<thead>
<tr>
<th>Seq</th>
<th>Action</th>
<th>Source IPv6/Prefix Length</th>
<th>Destination IPv6/Prefix Length</th>
<th>Protocol</th>
<th>Source Port</th>
<th>Dest Port</th>
<th>DSCP</th>
<th>Direction</th>
<th>Num</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Deny</td>
<td>::/0</td>
<td>::/0</td>
<td>UDP</td>
<td>Any</td>
<td>5353</td>
<td>Any</td>
<td>Any</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Permit</td>
<td>::/0</td>
<td>::/0</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>Any</td>
<td>0</td>
</tr>
</tbody>
</table>
IPv4/IPv6 Traffic/Client Statistics

During the IPv6 Security Summit
How it gets collected
The Scripts

Collecting the data via SNMPv3 with the net-snmp tools

- snmpget -v3 -u $RUSER -l authPriv -a sha -A $AUTH -x aes -X $PASS $IP $MIB
- snmpwalk -v3 -u $RUSER -l authPriv -a sha -A $AUTH -x aes -X $PASS $IP $MIB

- Every 30sec
SNMP-MIBs

Bandwidth and Traffic

- MIB IF-MIB
 Object ifHCInOctets
 OID 1.3.6.1.2.1.31.1.1.1.6.$INTERFACE

- MIB IF-MIB
 Object ifHCOutOctets
 OID 1.3.6.1.2.1.31.1.1.1.10.$INTERFACE

- MIB IP-MIB
 Object ipIfStatsHCInOctets
 OID 1.3.6.1.2.1.4.31.3.1.6.IPv4.$INTERFACE
 OID 1.3.6.1.2.1.4.31.3.1.6.IPv6.$INTERFACE

- MIB IP-MIB
 Object ipIfStatsHCOutOctets
 OID 1.3.6.1.2.1.4.31.3.1.33.IPv4.$INTERFACE
 OID 1.3.6.1.2.1.4.31.3.1.33.IPv6.$INTERFACE
WLAN

WLAN-Clients per Band

- MIB: AIRESPACE-WIRELESS-MIB
 Object: bsnDot11EssNumberOfMobileStations
 OID: 1.3.6.1.4.1.14179.2.1.1.1.38

- MIB: AIRESPACE-WIRELESS-MIB
 Object: bsnDot11EssVpnIkeLifetime
 OID: 1.3.6.1.4.1.14179.2.1.1.1.25
Clients

IPv4 & IPv6 Clients per VLAN

- MIB IP-MIB
- Object ipNetToPhysicalPhysAddress
- OID 1.3.6.1.2.1.4.35.1.4.$VLAN.ipv4
- OID 1.3.6.1.2.1.4.35.1.4.$VLAN.ipv6

- compare ARP and Neighbor cache tables with a python script to get the IPv4, Dual-Stack and IPv6 number of clients
Generated Traffic
Since Sunday to Monday 20:00

<table>
<thead>
<tr>
<th></th>
<th>Data Sent</th>
<th>Data Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv4</td>
<td>3.70 GB</td>
<td>67.7 GB</td>
</tr>
<tr>
<td>IPv6</td>
<td>0.72 GB</td>
<td>10.9 GB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Upstream usage (%)</th>
<th>Downstream usage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Uplink Bandwidth Statistics

Since Sunday to Monday 20:00

Max down: 84995 kbit/s ≈ 10.6 MB/s
Max up: 2551 kbit/s ≈ 0.3 MB/s
Uplink Bandwidth
only IPv4

Since Sunday to Monday 20:00

Max down: 80328kbit/s ≈ 10 MB/s
Max up: 2546 kbit/s ≈ 0.3 MB/s
Uplink Bandwidth only IPv6

Since Sunday to Monday 20:00

Max down: 59810 kbit/s ≈ 7.5 MB/s
Max up: 1957 kbit/s ≈ 0.3 MB/s
Clients per Wireless Band

Since Sunday to Monday 20:00

Max WLAN clients: 181
Max clients 802.11a: 59
Max clients 802.11g: 60
Max clients 802.11n: 32
Max clients 802.11n (5Gz): 30
Only IPv4, Dual-Stack, only IPv6 - Clients

Since Monday to Tuesday 9:00

Max Devices: 262
Max IPv4 only: 52
Max Dual-Stack: 201
Max IPv6 only: 9
IPv6 only Clients
NAT64-Vlan

Since Monday to Tuesday 9:00

Max IPv6 only clients:33
Kudos to Pascal and Rafael for setting up this awesome monitoring !! You Rock !

Troopers Netmon

Visit Troopers14 Network Monitor: netmon1.troopers.de
Summary etc.

- Given the nature of IPv6 link layer behavior, reducing the amount of chatter must be taken care of.

- By means of configuration tweaks in regards to multicast traffic as well as supporting features on the WiFi Controller.

- The WLC supports quite a lot of FHS security mechanisms which are enabled in the default state.
References

[1] - Why Network-Layer Multicast is Not Always Efficient At Datalink Layer

