Securing IPv6 in the Cisco Space

Christopher Werny <cwerny@ernw.de>
Agenda

- Cisco First-Hop Security Intro
- Secure Layer-2 configuration
- Secure Layer-3 configuration
- Routing Protocol Security configuration
- FHRP Protocol Security configuration
- Traffic Filter and Extension Header Filtering
Cisco First-Hop-Security

- Cisco name for various security features in IPv6

- Staged in three phases

- Every Phase will release/released more IPv6 security features to achieve feature parity with the IPv4 world
Phase I

- Available since Summer 2010
- Introduced RA Guard and Port based IPv6 ACLs
- In the beginning, only supported on datacenter switches
 - Since 15.0(2) supported on C2960S and C3560/3750-X
Phase II

- Available since end of 2011/ beginning of 2012 (depending on the platform)

- Introduced DHCPv6 Guard and NDP Snooping
 - DHCP Snooping and Dynamic ARP Inspection in the IPv4 World

- As of March 2013, no support on access-layer switches available
 - Only on Cat 4500, Cat 4948 (E/F) and 7600 Routers
Phase 3

- Available since December 2012

- Introduced Destination-Guard
 - To mitigate Neighbor Cache Exhaustion attack

- Only available on the same switches as in Phase 2
General Principles on FH Command Interface[1]

Each FH feature provides a configuration mode to create and populate policies (+ one implicit “default” policy)

```plaintext
ipv6 nd raguard policy MYHOST
device-role host
```

Each FH feature provides commands to attach policies to targets: box, vlan, port

```plaintext
vlan configuration 100
ipv6 nd raguard attach-policy MYHOST
ipv6 snooping
interface e0/0
ipv6 nd raguard attach-policy MYROUTER
```

Packets are processed by the lowest-level matching policy for each feature

Packets received on e0/0 are processed by policy ra-guard “MYROUTER” AND policy snooping “default”

Packets received on any other port of vlan 100 are processed by policy ra-guard “MYHOST” AND policy snooping “default”
Cisco First Hop Security

Phase I
RA Guard – Host Mode

- Implements *isolation* principle similar to other L2 protection mechanisms already deployed in v4 world.

- RFC 6105

- Works quite well against some attacks.
 - But it seems currently no logging or port deactivation can be implemented. RA packets are just dropped.

- Can be easily circumvented
RA Guard – Host Mode

Router(config-if)#ipv6 nd ?
 raguard RA_Guard Configuration Command
Router(config-if)#ipv6 nd raguard ?
 <cr>
Router(config-if)#switchport mode access
Router(config-if)#ipv6 nd raguard
Router(config-if)#exit
Router(config)#exit

Router# show version
Cisco IOS Software, s3223_rp Software (s3223_rp-IPBASEK9-M), Version 12.2(33)SXI5, RELEASE SOFTWARE (fc2)
Port-based ACLs

4948E(config)#ipv6 access-list IPv6
4948E(config-ipv6-acl)#deny ipv6 any any undetermined-transport
4948E(config-ipv6-acl)#deny icmp any any router-advertisement
4948E(config-ipv6-acl)#permit ipv6 any any
4948E(config)#interface g1/19
4948E(config-if)#ipv6 traffic-filter IPv6 in
Block Forwarding of RAs on Infrastructure Level

- RA Guard or ACLs
 - Or!
- RA Guard currently (Mar 2013) not a bullet-proof solution.
 - DF switch in THC’s fakerouter6 does the trick.
 - See also http://www.insinuator.net/2011/05/yet-another-update-on-ipv6-security-some-notes-from-the-ipv6-kongress-in-frankfurt/
- ACLs might be operationally expensive.
 - Probably port based ACLs not part of your current ops model, right?
 - HW support needed
 - Still, currently best protection approach that’s available
 - See also http://www.insinuator.net/2012/03/the-story-continues-another-ipv6-update/
- RA Guard will (hopefully) evolve
 - Some IETF drafts out there to address evasion problem
Evaluation of RFC 6104 Controls

<table>
<thead>
<tr>
<th>Control</th>
<th>Sec Benefit</th>
<th>Operational Feasibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual configuration</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>RA Snooping (RA Guard)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Using ACLs</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>SEcure Neighbor Discovery (SEND)</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Router Preference</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Relying on Layer 2 Admission Control</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Host-Based Packet Filters</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Using an “Intelligent” Deprecation Tool</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Using Layer 2 Partitioning</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
Cisco First Hop Security

Phase II
DHCPv6 Guard

- Similar functionality to DHCP Snooping in the IPv4 world
 - But more sophisticated
- Blocks reply and advertisement messages that originates from “malicious” DHCP servers and relay agents
- Provides finer level of granularity than DHCP Snooping.
- Messages can be filtered based on the address of the DHCP server or relay agent, and/or by the prefixes and address range in the reply message.
DHCPv6 Guard

ipv6 access-list acl1
 permit host FE80::A8BB:CCFF:FE01:F700 any
ipv6 prefix-list abc permit 2001:0DB8::/64 le 128

ipv6 dhcp guard policy pol1
device-role server
match server access-list acl1
match reply prefix-list abc
trusted-port <optional>

interface GigabitEthernet 0/2/0
 switchport
 ipv6 dhcp guard attach-policy pol1 vlan add vlan 10

vlan 10
ipv6 dhcp guard attach-policy pol1

show ipv6 dhcp guard policy pol1
Cisco IPv6 Snooping

- IPv6 Snooping is the basis for several FHS security mechanisms
 - Including ND Inspection and address glean

- When configured on a target (VLAN, Interface etc.), it redirects NDP and DHCP traffic to the switch integrated security module
IPv6 ND Inspection

- Learns and secures bindings for addresses in layer 2 neighbor tables.
- Builds a trusted binding table database based on the IPv6 Snooping feature.
- IPv6 ND messages that do not have valid bindings are dropped.
- A message is considered valid if the MAC-to-IPv6 address is verifiable.
IPv6 ND Configuration

- Device(config)#ipv6 snooping policy policy1
- Device(config-ipv6-snooping)# ipv6 snooping attach-policy policy1
- Device(config)# ipv6 nd inspection policy policy1
- Device(config-nd-inspection)# drop-unsecure
- Device(config-nd-inspection)# device monitor
Cisco First Hop Security
Phase III
IPv6 Destination Guard

Overview

- Blocks and filters traffic from an unknown source and filters IPv6 traffic based on the destination address.
- Uses „first-hop security binding table“
 - populates all active destinations into it and blocks data traffic when the destination is not identified.
IPv6 Destination Guard

Requirements

- Implemented in Cisco 7600, Cisco Catalyst 4500/4900, 3560-X/3750-X and 2960S

- Requires 15.3S, 15.2S, 15.1SG or 15.0(2)SE
IPv6 Destination Guard

Example Configuration

Router(config)# vlan configuration 300
Router(config-vlan-config)# ipv6 destination-guard attach-policy destination
% Warning - 'ipv6 snooping' should be configured before destination-guard

Router(config-vlan-config)# ipv6 snooping attach-policy ND
Router(config)# vlan configuration 300
Router(config-vlan-config)# ipv6 destination-guard attach-policy destination
Router(config-vlan-config)#

Router# show ipv6 destination-guard policy destination
Destination guard policy Destination: enforcement always
 Target: vlan 300
Layer 3 configuration
Suppress Emission of RAs on Infrastructure Level

Comes in different flavors (full suppress vs. clearing A-flag)
Will just prevent “benign” host processing, but not prevent attacks against hosts from their (potentially compromised) neighbors.

- **Full suppression**
 - Cisco:
    ```
    L3_device(config-if)#ipv6 nd ra suppress [all]
    ```
 - On some devices/OSs RAs might still be triggered by some host on local link sending router solicitation (RS) packets.
 - E.g. in Cisco land different behavior between 12.4 and 15.x releases. See also CSCth90147.
 - Default route will have to be configured statically on hosts then, too.
 - Might have influence on first hop redundancy approach.
 Probably not relevant for these types of networks though.
 - Must be kept in mind for future activities in $SEGMENT.
 - People (other admins…) might expect it (RAs) “just to be there”.
 - We don’t like the suppress_RAs approach anyway. Deviation from default…
Tuning the Neighbor Cache Size

- `ipv6 nd cache interface-limit`
 - This one provides some logging, too. Might come in handy for attack detection.
 - Mar 10 15:11:51.719: %IPV6_ND-4-INTFLIMIT: Attempt to exceed interface limit on GigabitEthernet0/1 for 2001:DB8:0:900D::2:329A (So use it in any case!)
 - on IOS-XE 2.6: `ipv6 nd resolution data limit`.
Unicast Reverse Path Forwarding for IPv6

- Supported for IPv6 since 12.2(13)T / 12.2(28)SB
 - Before using it in a production environment, check if it is done in software on your platform (e.g. Cat 6500 with SUP720).

- interface GigabitEthernet 5/0/0
- ipv6 verify unicast reverse-path
Default Router Preference

- In RFC 4191 an additional flag was introduced within RA messages to indicate the preference of a default router in case more than one are present on the local link.
Router Preference Values

- The *preference* values are encoded as a two-bit signed integer with the following values:
 - 01 High
 - 00 Medium (default)
 - 11 Low
 - 10 Reserved
RA Messages

- When the *preference* is set, the RA messages look like:

```
Internet Control Message Protocol v6
Type: 134 (Router advertisement)
Code: 0
Checksum: 0xed0 [correct]
Cur hop limit: 64
Flags: 0x08
  0... .... = Not managed
  .0... ..... = Not other
  ..0. ..... = Not Home Agent
  ...0 1... = Router preference: High
Router lifetime: 1800
Reachable time: 0
Retrans timer: 0
ICMPv6 Option (Source link-layer address)
ICMPv6 Option (MTU)
ICMPv6 Option (Prefix information)
```

```
Internet Control Message Protocol v6
Type: 134 (Router advertisement)
Code: 0
Checksum: 0xedc6 [correct]
Cur hop limit: 64
Flags: 0x00
  0... .... = Not managed
  .0... ..... = Not other
  ..0. ..... = Not Home Agent
  ...0 0... = Router preference: Medium
Router lifetime: 1800
Reachable time: 0
Retrans timer: 0
ICMPv6 Option (Source link-layer address)
ICMPv6 Option (MTU)
ICMPv6 Option (Prefix information)
```
Configuration (Cisco)

- The configuration of the preference is done with the following command:
 - Router(config)# interface f0/1
 - Router(config-if)# ipv6 nd router-preference {high | medium | low}

- If the command is not configured, the default value of medium will be used in the RA messages.

- Command available since IOS Version 12.4(2)T
Miscellaneous stuff already known from IPv4, but still applicable in the IPv6 World:

- (config-int)#no ipv6 redirects
- (config-int)#no ipv6 mask-reply
- (config)#no ipv6 source-route
Routing Protocol Security
Routing Protocol Security

- BGP, ISIS, EIGRP no change required
 - MD5 authentication of the routing peers

- OSPFv3 has changed and pulled the authentication from the protocol and instead rely on transport mode Ipsec
 - But see draft-ospf-auth-trailer-ospfv3
Best Current Practices

- **Interface Ethernet0/0**
 - ipv6 ospf 1 area 0
 - ipv6 ospf authentication ipsec spi 500 md5 1234567890ABCDEF1234567890 ABCDEF

- **Interface Ethernet0/0**
 - ipv6 authentication mode eigrp 100 md5
 - ipv6 authentication key-chain eigrp 100 MYCHAIN

- **Key chein MYCHAIN**
 - Key 1
 - Key-string 1234567890abcdef
IPv6 FHRP Protocols
FHRP

- Not much changed in the FHRP Space

- Same mechanisms in the IPv4 world are used in IPv6 for securing FHRP protocols
 - Which boils down to MD5 authentication
HSRPv2

- HSRP IPv6 group has a virtual mac address
 - Derived from the HSRP-group
- Virtual IPv6 link-local address
 - Derived from the virtual-mac
- Uses UDP Port 2029
HSRPv2 Configuration

- interface FastEthernet0/0
- no ip address
- ipv6 address 2020:AB8:2001::1010/64 ipv6 enable standby version 2
- standby 1 ipv6 autoconfig
- standby 1 ipv6 2001:DB8::2/64
- standby 1 ipv6 2001:DB8::3/64
- standby 1 ipv6 2001:DB8::4/64
- standby 1 authentication md5 key-string troopers
GLBP Configuration

- interface FastEthernet0/0
- no ip address
- ipv6 enable
- ipv6 address 2020:AB8:2001::1010/64
- glbp 10 ipv6 FE80::1
- glbp 10 timers 5 18
- glbp 10 load-balancing host-dependent
- glbp 10 priority 254
- Glbp 10 authentication md5 key-string troopers
Traffic Filter and Extension Header Filtering
Basic Bogon Filter List 1/2

<table>
<thead>
<tr>
<th>Packets to Block</th>
<th>Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deny unspecified address</td>
<td>::</td>
</tr>
<tr>
<td>Deny loopback address</td>
<td>::1</td>
</tr>
<tr>
<td>Deny IPv4-compatible addresses</td>
<td>::/96</td>
</tr>
<tr>
<td>Deny IPv4-mapped addresses (obsolete)</td>
<td>::ffff:0.0.0.0/96</td>
</tr>
<tr>
<td>Deny automatically tunneled packets using compatible addresses (deprecated RFC 4291)</td>
<td>::0.0.0.0/96</td>
</tr>
<tr>
<td>Deny other compatible addresses</td>
<td>::224.0.0.0/100</td>
</tr>
<tr>
<td></td>
<td>::127:0.0.0/104</td>
</tr>
<tr>
<td></td>
<td>::0.0.0.0/104</td>
</tr>
<tr>
<td></td>
<td>::255.0.0.0/104</td>
</tr>
</tbody>
</table>
Basic Bogon Filter List 2/2

<table>
<thead>
<tr>
<th>Packets to Block</th>
<th>Addresses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deny false 6to4 packets</td>
<td>2002:e000::/20</td>
</tr>
<tr>
<td></td>
<td>2002:7f00::/24</td>
</tr>
<tr>
<td></td>
<td>2002:0000::/24</td>
</tr>
<tr>
<td></td>
<td>2002:ff00::/24</td>
</tr>
<tr>
<td></td>
<td>2002:0a00::/24</td>
</tr>
<tr>
<td></td>
<td>2002:ac10::/28</td>
</tr>
<tr>
<td></td>
<td>2002:c0a8::/32</td>
</tr>
<tr>
<td>Deny link-local addresses</td>
<td>fe80::/10</td>
</tr>
<tr>
<td>Deny site-local addresses (deprecated)</td>
<td>fec0::/10</td>
</tr>
<tr>
<td>Deny unique-local packets</td>
<td>Fc00::/7</td>
</tr>
<tr>
<td>Deny multicast packets (only as a source address)</td>
<td>Ff00::/8</td>
</tr>
<tr>
<td>Deny documentation address</td>
<td>2001:db8::/32</td>
</tr>
<tr>
<td>Deny 6Bone addresses (deprecated)</td>
<td>3ffe::/16</td>
</tr>
</tbody>
</table>
IPv6 ACL@ERNW

Up to Discussion:

deny ipv6 host ::1 any log
remark ===Deny IPv4-compatible===
deny ipv6 ::/96 any log
remark ===Deny IPv4-mapped===
deny ipv6 0:0:0:FFFF::/96 any log
remark ===Deny Site-Local===
deny ipv6 FEC0::/10 any log
remark ===Deny ULA===
deny ipv6 FC00::/7 any log
remark ===Deny Documentation===
deny ipv6 2001:DB8::/32 any log
remark Deny ===6Bone===
deny ipv6 3FFE::/16 any log
remark ===Permit T-COM Address===
permit icmp host 2003:60:4010::1 any log
remark ===Deny own address space inbound===
deny ipv6 2003:60:4010::/48 any log
remark ===Permit icmp===
permit icmp any any log

remark ===Allow DNS===
permit udp any eq domain 2003:60:4010::/48 log
remark ===TCP Established===
permit tcp any any established
remark ===Deny Rest===
sequence 270 remark ===mx1.ernw.net===
permit tcp any host 2003:60:4010:10A0::11 eq smtp
permit tcp any host 2003:60:4010:10A0::11 eq 22
remark ===www + troopers===
permit tcp any host 2003:60:4010:1090::11 eq www
permit tcp any host 2003:60:4010:1090::11 eq 443
permit tcp any host 2003:60:4010:1090::12 eq www
permit tcp any host 2003:60:4010:1090::12 eq 443
permit tcp any host 2003:60:4010:1090::13 eq www
remark ===Insinuator===
permit tcp any host 2003:60:4010:11B0::11 eq www
Full Bogon List

Full Bogon List can be found here:
- https://www.team-cymru.org/Services/Bogons/fullbogons-ipv6.txt
Extension Header

- The ASA supports Extension Header Filtering since 8.2(2)

- Modular Policy Framework used in conjunction with service-policy on an interface
The ASA to selectively drop IPv6 packets based on following types of extension headers found anywhere in the IPv6 packet:

- Hop-by-Hop Options
- Routing (Type 0)
- Fragment
- Destination Options
- Authentication
- Encapsulating Security Payload
Configuration Parameters

- **Class-map** ipv6-ext-hdr

 match header count gt. 2

- **policy-map**

 - **type inspect ipv6**

 - Class ipv6-ext-hdr

 - action drop

- **Service policy ipv6 in interface outside**
References