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What this is about?
● A personal rant / ”quest”
● The fun and huge presumpion of 

defining ”hacking” :-)
● An excuse for citing Phrack, Uninformed, 

Defcon/Recon/Shmoocon/Toorcon/...

● Realization that ”hacking” goes to the 
heart of fundamental Computer Science 
problems



  

Who am I?

● Dartmouth College

● ”Research Assistant Professor” 



  

”Hackers!”

● The Adversary

● Harbingers of Future Technologies

● Engineers / researchers of a unique 
specialization (not yet formally defined)

– ”What kind of engines?”



  

”Hackers!”

● The Adversary
– Media + politicians

Notice how they are always selflessly 
saving us from something or other? 

– ”We may need to forego certain freedoms to 
make the Internet a safer place”
      e.g., John Markoff, NYT, Feb. 2009
         (paraphrased)

– Enough said  :-(



  

”Hackers!”
● Harbingers of the Future

– Hackers realized the potential of universal, 
ubiquitous, cheap connectivity long before 
actual technology owners
    Emmanuel Goldstein, Toorcamp '09

– Phone companies initially expected their 
revenues to come from ”customers” 
connecting to (for-pay) ”services”, not 
subscribers talking with other subscribers
     Andrew Odlyzko (AT&T Research)
         ”Content is not King”, 2001 



  

”Hackers!”
● Engineers of a unique kind / not yet formally 

defined discipline of engineering
● ”What kind of engines?”

 



  

”Hackers!”
● Engineers of a unique kind / not yet 

formally defined discipline of engineering
● ”What kind of engines?”

– What kind of fundamental, hard problems 
are they up against?

● E.g.: energy to motion is hard,
      storing energy is hard, etc.

– What laws of nature are involved?
● E.g.: Newtonian conservation laws, 

laws of thermodynamics, P != NP (?), ... 



  

The defining challenges

● Something really, provably hard (as in ”NP”, 
RSA, other ”God's own math”)

● Something really human, what we must do 
every day 
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every day 

Composition
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● Something really, provably hard (as in ”NP”, 
RSA, other ”God's own math”)

● Something really human, what we must do 
every day 

Composition

Trust



  

Composition is hard
● Informally: even if non-trivial properties of 

parts are known, the same properties of the 
combined system cannot be deduced by 
any general formal algorithm

● A.k.a.  ”Security is not composable”
● Kind of formally: 

     Rice's Theorem ~ Halting problem
● There is a reason why humans don't deal 

well with complexity



  

Trust is crucial to human activities

● Economies and ways of life are defined by 
levels of trust

– ”High Trust” vs ”Low Trust” societies theory

– Personal experience :-)

● FX, Bratzke @ SiS 2007:

”Pragmatically, InfoSec is about working 
towards computer systems we can 
finally trust” 



  

The discipline of hacking 
at a glance

Composition,
complexity

TrustHacking

Lofty theory Everyday practice



  

Hacking as R&D 

Hacking (n.):                                                      

the capability/skill set to question and verify 

trust (security, control) assumptions 

expressed in complex software and hardware 

(as well as in human-in-the-loop processes 

that use them) 

...here's hoping for               :-)



  

Hacking as R&D 

Exploitation (n.):                                               

       causing a (complex) computer or human-

computer system to behave contrary to the 

trust assumptions and/or expectations

of its designers or operators



  

Lesson 1:  Look across layers

● Humans aren't good at handling complexity
● Engineers fight it by layered designs:

”main”

Libc, lib*

sys_call_table

VFS / sys_*

Driver interfaces



  

Layers are magical

● They just work, especially the ones below
● One layer has proper security => 

    the whose system is trustworthy  



  

Layers are magical

● They just work, especially ones below
● One layer has proper security => 

    the whose system is trustworthy  

NOT!  ;-)



  

Layers are magical

● ”They just work, especially ones below”
● ”One layer has proper security => 

    the whose system is trustworthy”  
● In real life,  layer boundaries become 

boundaries of competence



  

Layers are magical

● ”They just work, especially ones below”
● ”One layer has proper security => 

    the whose system is trustworthy”  
● In real life,  layer boundaries become 

boundaries of competence
● Hacker methodology in a word:

            cross-layer approach



  

Best OS course reading ever :-) 

● Phrack 59:5, palmers@team-teso
  ”5 Short Stories about execve”, 
                                ”Deception in depth”

Loader, binfmt

Dynamic linker!

sys_call_table

VFS 

FS

sys_execve, ”The Classic”

do_execve,   ”The Obvious”

open_exec,   ”The Waiter”

load_binary,  ”The Nexus”

mmap/mprotect, ”The Lord”



  

”Cross-layer approach” in action

● Phrack 59:5, palmers@team-teso
  ”5 Short Stories about execve”, 
                                ”Deception in depth”

Loader, binfmt

Dynamic linker!

sys_call_table

VFS 

FS

sys_execve, ”The Classic”

do_execve,   ”The Obvious”

open_exec,   ”The Waiter”

load_binary,  ”The Nexus”

mmap/mprotect, ”The Lord”



  

Learning about ABI?  Rant.
● One (!) accesible ”non-hacker” book on ABI: 

– John Levine, ”Linkers & Loaders”

● Everything else worth reading and 
available is hacker sources: 

– Silvio Cesare (Phrack 56:7, etc.) 

– Phrack 61–63 (including Elfsh > ERESI)

– ”Cheating the ELF”, the grugq

– ”ELF virus writing HOWTO” (Bartolich)

– Uninformed.org (”Locreate”, ...)



  

Lesson 2:  Composition is Weird 

Any complex execution 
environment is actually 
many:

One intended machine, 
endless weird machines

Exploit is ”code” that 
runs on a ”weird 
machine”, in its ”weird 
instructions” 



  

Exploitation is ...

● Programming the ”weird machine” inside 
your machine  (via crafted input)

● One case study:

  from  return-into-libc (1997?) to 
        ”return-oriented programming” (2008)



  

”Malicious computation”

● All the work is done by code fragments 
already present in the trusted code!

● In 2008, academia calls this threat 
”malicious computation” vs ”malicious code”

– Hacker publications and countermeasures: 
1997-- (Solar Designer, Wojtczuk, …)

– Phrack 58 #4 (Nergal, 2001) spells it out

– CCS 2008, it gets the cool name 
”return-oriented programming”



  

Phrack 58 #4  (2001)

Sequence stack frames (pointers & args) just 
so that existing code fragments are chained 
into programs of any length:

f
1
( args )

f
2
( args )

...



  

Phrack 58 #4
● Sequence stack frames (pointers & args) 

just so that existing code fragments are 
chained into programs of any length

– Just like TCL or Forth  programs

– Pointers to functions can be provided by 
OS's  dynamic linker itself

●                       Another elementary instruction 
                    of the ”weird machine”, 
                    called through PLT:
                    ”return-into-Dynamic-Linker”  

DL



  

Case study timeline
● Solar Designer, "Getting around non-executable stack (and 

fix)", 1997

● Rafal Wojtczuk, "Defeating Solar Designer non-executable 
stack patch", 1998

● Phrack 58:4 (Nergal), 59:5 (Durden)

● Shacham et al., 2007-2008

– ”The geomerty of innocent flesh on the bone”, 2007

– ”Return-Oriented Programming: Exploits Without 
Code Injection”, 2008

● Hund, Holz, Freiling, ”Return-oriented rootkits”, 2009

– Actual ”compiler” to locate and assemble return-
target code snippets into programs

”PaX case study”
ASLR activity



  

So we are waiting for...
● Double-free –oriented programming? :-)
● In each case, the original code contains 

snippets usable as ”instructions” of a ”weird 
machine” that can be composed together

”OMG, it's 
Turing-complete!” 



  

Lesson 3: Solid design ideas will 
be reborn in ”hacking” 

● Mandatory access control
– Each principal is labeled

● All data is labeled
– ”Everything is a file”

● Labels are checked at each 
operation by a  reference 
monitor

– Most trusted part of OS, 
”trusted code base”  

The ”Orange Book”
US DoD

”Rainbow series”



  

Bell-LaPadula Formalism (1973)

Goal: coltrol information flow, protect secrets 
  from colluding malicious users

Secret

Public

● ”No read up” 
   (can't read higher 
     privs' data)

● ”No write down” 
   (can't willfully
     downgrade data)

a principal 



  

Biba integrity model (1977)

Goal: prevent integrity violations by and
          through lower level users

Most critical

Least critical

● ”No read down”
(let untrusted stuff  
  alone)

● ”No write up” 
   (can't clobber
     higher layers)

a principal 



  

Once there was hardware...

● The general ”Orange Book” approach:
– System objects get labeled according to 

parts they play security-wise 

– Labeling enforced by OS and/or HW 

● Tagged 
architectures

● MMU memory 
segmentation



  

...time passes...

● The general ”Orange Book” approach:
– System objects get labeled according to 

parts they play security-wise 

– Labeling enforced by OS and/or HW

● Being executable – ”code” vs ”data” – is     
a most fundamental trust-wise distinction 
between ”bunches of bytes” in RAM

– Code runs, does stuff

– Data kind of sits there



  

...epic fail...

● Being executable – ”code” vs ”data” – is     
a most fundamental trust-wise distinction 
between ”bunches of bytes” in RAM...

...and yet commodity systems ignored it!

Epic FailEpic Fail



  

Enter hacker patches
● Label x86 pages as non-executable
● Emulate absent NX trapping bits to enforce

● pageexec:
– Overload PTE's Supervisor bit, 

in conjunction with split TLB

● segmemexec:
– Map code and data twice, via 

different x86 segments

– Instruction fetches from data-
only segment will trap

PaX



  

Code Seg.

Data Segs

ITLB

DTLB



  

This is Beautiful
● ”Like Xmas for trust engineering”
● ”Hackers keep the dream alive!”

● Labels (NX) are kept as close 
to their objects as possible – 
right where they belong!

● Enforcement is by trapping – 
as efficient as it gets

● Page fault handler is a part of 
the ”reference monitor”



  

Lesson 4: Debugging ~ Trust ~ 
Security

● Trust is ”relying on an entity to behave 
as expected”

● Debugging is an activity that links 
expected behavior with actual behavior

● So does security policy enforcement!

● Hacker debuggers approach full-fledged 
programmable, scriptable environments



  

Thou shalt know how they 
debugger works

● Hackers are leading makers of debuggers
● ”Unconventional” debugging

– Dum(b)ug 

– Rr0d Rasta debugger

– RE:Trace, RE:Dbg
● Uses DTrace

– OllyBone (”special trap” case)
● Traps on ”instr fetch from 

a page jsut written” 



  

”The march of debuggers”

Expressive power

Knowledge
of expected 

program
behaviors

Debug 
regs

IDA+PaiMei, Immunity; 
RE:Trace, SystemTap?
                                  , ...

X86 MMU
hacks: 
PaX, 
OpenWallPaging 

hacks
Kprobes
DTrace



  

Lesson 5:  Trust relations are 
first-class networking objects

Common & 
well-used tools
● Get, deduce
● Check 
● Describe
● Manage

”first class” 
kinds of objects  



  

Follow trust relations

Trust (-relationship) mapping of networks:
   an industry created by hacker tools.



  

Thank you!

● I think I learned more about the real 
challenges of CS from hacker research
than from any other source

● ”Hackers are a national resource”
                                           Angus Blitter

● Security does not get better until hacker 
tools establish a practical attack surface

  Joshua Wright 



  

I owe many thanks to

● FX, who inspired me to give this talk at RSS
● Enno Rey and ERNW team for having me 

here and many discussions of trust and 
control in industry practice

● Greg Conti, who did a lot to promote the 
value of hacker research in academia

● Sean Smith, who encouraged me to write 
”What hackers know that the rest of us 
don't” and came up with that title
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