
1 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Advanced Payload Strategies: What is new,
what works and what is hoax?

Rodrigo Rubira Branco (BSDaemon)
Senior Vulnerability Researcher

Vulnerability Research Labs (VRL) – COSEINC
rodrigo_branco *noSPAM* research.coseinc.com

2 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Who Am I?

  Rodrigo Rubira Branco aka BSDaemon;
  Senior Vulnerability Researcher/COSEINC
  Was Security Expert @Check Point & Linux Developer in the Advanced Linux Response Team of IBM;
  Mainteiner of many open-source projects;
  Some interesting researchs:

 FreeBSD/NetBSD/TrustedBSD/DragonFlyBSD all version kernel integer overflow
 FreeBSD 5.x Kernel Integer Overflow Vulnerability
 Apple Mac OS X 10.4.x kernel memory corruption vulnerability
 X11R6 XKEYBOARD extension Strcmp() buffer overflow vulnerability (Solaris all versions, including 10)
 Remote exploit for Borland Interbase 7.1 SP 2 and lower
 Remote root exploit for AppleFileServer
 MacOSX DirectoryService local root exploit
 Halflife <= 1.1.1.0 , 3.1.1.1c1 and 4.1.1.1a remote exploit
 Mac OS X v10.3.8, Mac OS X Server v10.3.8 env overflow
 2 security bugs reported to Microsoft (affects ISA Server)
 Phrack Article about SMM rootkits

  RISE Security member
  SANS Instructor: Mastering Packet Analysis, Cutting Edge Hacking Techniques, Reverse Engineering Malwares
  Member of the GIAC Board for the Reverse Engineering Malwares Certification
  Organizer: H2HC Conference (http://www.h2hc.com.br/en)

3 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

DISCLAIMER

  Altought I’m a company employee and I’m using my work time to
come here, everything that I’m presenting was completely created
by me and are not supported, reviewed, guaranteed or whatever by
my employer
–  The protection part of this presentation is my master thesis and

was started many years ago

  Some technologies analysed in this work are patented so if you wish
to use, expand or whatever the ideas mentionated here it’s a good
idea to contact me or the companies who are holding the patents
first

  I’m using whenever possible Check Point’s terminology, since they
hold a patent on the matter

4 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Agenda

  Objectives / Introduction

PART I
  Modern Payloads

–  Polymorphic Shellcodes
»  Context-keyed decoders
»  Target-based decoders

–  Camouflage – Bypassing context recognition
–  Syscall proxying and remote code interpreter/compiler

PART II
  How intrusion prevention/detection system works
  Actual limitations and proposals

–  Network traffic disassembly
–  Virtual execution challenges

  Future

5 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Objectives

  Show the added value of Hacking
  Demonstrate how prevention systems works, and why/

when they are useful (or not)
  Explain what changed in the world of payloads without

focusing in the assembly language because it became
boring

  Most important: Start a discussion regarding possible
solutions on how to detect this advanced payloads in a
generic way, without caring about other problems we are
actually suffering (like SSL sites for example) – All the
live demonstrations are a master project which will be
released together with a paper on this subject later on
this year

6 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Introduction

  Evolution of exploitation frameworks made possible for newbies to
use advanced encoding techniques

  Assembly knowledge or advanced skills are not anymore a pre-req
for the usage of advanced payloads (are you sure it was in the
past?)

  There is a huge gap of what actually exists in those frameworks and
what is been formaly documented (yeah, we are all guilt)

  Detection/Prevention systems have not evolved as well (they tried,
but they are loosing miserably the competition)

  Old-school vulnerabilities (let’s say, system-level, low-level, or
whatever that involves code injection) are still not generically
prevented by those systems – can you expect them to prevent web
2.0 attacks??

7 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Survey

 mfmsr r0 /* Get current interrupt state */
 rlwinm r3,r0,16+1,32-1,31 /* Extract old value of ‘EE’ */
 rlwinm r0,r0,0,17,15 /* clear MSR_EE in r0 */
 SYNC /* Some chip revs have
 problems here... */
 mtmsr r0 /* Update machine state */
 blr /* Done */

cli

CLear Interrupt Flag - Clearing the IF flag causes the processor to ignore
maskable external interrupts

8 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Survey

This presentation will focus on the public that is used with the explanation
approach:

CLear Interrupt Flag - Clearing the IF flag causes the processor to ignore
maskable external interrupts

Whenever is possible I’ll simplify the contents, but a good base on the matters
of this presentation are required for a best understanding.

Ask your questions as soon as possible, since usually I
don’t leave any time in the end.

9 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

PART I

10 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Modern Payloads

  They try (or they do) to avoid detection (channel
encryption, code encoding)

  Usually they are more advanced, which means, bigger,
which means staged (they ‘download’ in someway more
portions of their own code)

  The idea is not just have a remote ‘/bin/sh’, but provide a
complete environment without leave any forensics
evidences

11 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

What is a polymorphic shellcode?

  Is a code with the ability to automatically
transform itself into a semantically equivalent
variant, frustrating attempts to have a verifiable
representation.
–  They avoid detection
–  They help to bypass application-specific filters

(tollower, toupper, isascii...)

12 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Polymorphism – How it works?

call decoder

shellcode

decoder

jmp shellcode

Generally, divided in two pieces:
 - The decoding loop
 - The GetEIP trick

13 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Polymorphism - How it works?

The decoder will invert the process used to encode the shellcode.

This process usually are a simple byte-to-byte loop + operations,
like:

 - ADD
 - SUB
 - XOR
 - SHIFT
 - Byte invertion

14 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Trampoline – No Null Bytes

/ * the %ecx register contains the size of assembly code (shellcode).
 *
 * pushl $0x01
 * ^^
 * size of assembly code (shellcode)
 *
 * addb $0x02,(%esi)
 * ^^
 * number to add
 */
 jmp label3
label1:
 popl %esi
 pushl $0x00 /* <-- size of assembly code (shellcode) */
 popl %ecx
label2:
 addb $0x00,(%esi) /* <-- number to add */
 incl %esi
 loop label2
 jmp label4
label3:
 call label1
label4:

/* assembly code (shellcode) goes here */

15 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Noir’s trick: fnstenv

-  Execute an FPU instruction (fldz)
-  D9 EE FLDZ -> Push +0.0 onto the FPU register stack.

-  The structure stored by fnstenv is defined as user_fpregs_struct in sys/user.h
(tks to Aaron Adams) and is saved as so:

 0 | Control Word
 4 | Status Word
 8 | Tag Word
 12 | FPU Instruction Pointer Offset
 ...

-  We can choose where this structure will be stored, so (Aaron modification of the
Noir’s trick):
 fldz
 fnstenv -12(%esp)
 popl %ecx
 addb 10, %cl
 nop

-  We have the EIP stored in ecx when we hit NOP. It’s hard to debug this
technique using debuggers (we see 0 instead of the instruction address)

16 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Fnstenv

/*
 * the %ecx register contains the size of assembly code (shellcode).
 *
 * pushl $0x00
 * ^^
 * size of assembly code (shellcode)
 *
 * xorb $0x00,(%eax)
 * ^^
 * number to xor
 */
 fldz
 fnstenv -12(%esp)
 popl %eax

 pushl $0x00 /* <-- size of assembly code (shellcode) */
 popl %ecx
 addb $0x13, %al /* <-- size of the entire decoder */

label1:
 xorb $0x00,(%eax) /* <-- number to xor */
 incl %eax
 loop label1

/* assembly code (shellcode) goes here */

17 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Target-based decoders

  Keyed encoders have the keying information available
or deductived from the decoder stub.

  That means, the static key is stored in the decoder stub

or

  The key information can be deduced from the encoding
algorithm since it’s known (of course we can not
assume that we will know all the algorithms)

18 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

xoring against Intel x86 CPUID

  Itzik’s idea: http://www.tty64.org

  Different systems will return different CPUID strings,
which can be used as key if we previously know what is
the target platform

  Important research that marked the beginning of target-
based decoders, but easy to detect by the ‘smart’
disassembly – more on this later

19 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

xor-cpuid

/* Coded by Rodrigo Rubira Branco rodrigo_branco@research.coseinc.com */
 xorl %eax, %eax /* EAX=0 - Getting vendor ID */
 cpuid

 jmp label3

label1:
 popl %esi

 pushl $0x00 /* <-- size of assembly code (shellcode) */
 popl %ecx

label2:
 xorb %bl, (%esi)
 incl %esi
 loop label2
 jmp label4

label3:
 call label1

label4:
/* assembly code (shellcode) goes here */

20 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Context-keyed decoders

  I)ruid’s idea: http://www.uninformed.org/?v=9&a=3&t=txt

  Instead of use a fixed key, use an application-specific
one:
–  Static Application Data (fixed portions of memory analysis)
–  Event and Supplied Data
–  Temporal Keys

  Already implemented in Metasploit...

21 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Camouflage – Bypassing context

  My big friend Itzik Kotler showed in Hackers 2 Hackers
Conference III

  The idea is to create a shellcode that looks like a
specific type of file (for example, a .zip file)

  This will bypass some systems, because they will
identify it’s a binary file and will not trigger an alert
–  Interesting is that some systems uses file identification to avoid

false-positivies

22 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Syscall Proxying

  When a process need any resource it must perform a
system call in order to ask the operating system for the
needed resource.

  Syscall interface are generally offered by the libc (the
programmer doesn’t need to care about system calls)

  Syscall proxying under Linux environment will be shown,
so some aspects must be understood:
–  Homogeneous way for calling syscalls (by number)
–  Arguments are passed via registers (or a pointer to the stack)
–  Little number of system calls exists.

23 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

System Call – How does it works?

24 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

System Call – Reading a File...

25 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

System Call – strace output

26 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

System Call Arguments

  EAX holds the system call number

  EBX, ECX, EDX, ESI and EDI are the arguments (some
system calls, like socket call do use the stack to pass
arguments)

  Call int $0x80 (software interrupt)

  Value is returned in EAX

27 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

System Call Proxying

  The idea is to split the default syscall functionality in two steps:

–  A client stub
Receives the requests for resources from the programs
Prepair the requests to be sent to the server (marshalling)
Send requests to the server
Marshall back the answers

–  A syscall proxy server
Handle requests from the clients
Convert the request into the native form (Linux standard – but may

support, for example, multi-architectures and mixed client/server OS)
Calls the asked system call
Sends back the response

28 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

System Call Proxying – Reading a File...

29 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

System Call Proxying – Packing

30 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

MOSDEF

  MOSDEF (mose-def) is short for “Most Definately”

  MOSDEF is a retargetable, position independent code, C
compiler that supports dynamic remote code linking
written in pure python

  In short, after you’ve overflowed a process you can
compile programs to run inside that process and report
back to you

»  Source: http://www.immunityinc.com/downloads/MOSDEF.ppt

31 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

PART II

32 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

How IDS/IPS works

  Capture the traffic

  Normalize it (session/fragment reassembly)

  Inspect
–  Pattern matching
–  Protocol validation (some does just basic protocol validation, like

ip, tcp and udp only, some others are doing more advanced
validations, like RPC implementations, SMB, DNS, HTTP... But
that really does not matter here)

–  Payload verification -> Here we are interested in

33 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

0day protection

  Every vendor in the market claims 0day protection

  Every vendor in the market claims polymorphic shellcode
detection

  Every vendor in the market are lieing?
 THIS IS A JOKE

34 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

  Signatures/Patterns
–  Reactive – can only detect known attacks.
–  Require analysis of each vulnerability/exploit.
–  Vulnerable to obfuscation & polymorphic attacks.

  Anomaly Detection
–  Baseline profiles need to be accumulated over time

»  Protocols, Destinations, Applications, etc.
–  High maintenance costs

»  Need highly experienced personnel to analyze logs
–  If the exploit looks like normal traffic – it will go undetected.

Methods for detecting malicious code

35 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Patterns on the decoder...

  Detect the fixed portion of the code: The decoder

  It does not work, because the decoder itself can be mutated to avoid
pattern matching:
–  Trash code (jumped)
–  Do nothing code (replacing NOPs)
–  Self-constructing decoders (shikata ga nai)

  SCMorphism help (no new releases since 2004!!)

36 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Shikata ga nai

  Created by spoonm for Metasploit

  Uses FPU GetEIP trick:
–  102 FPU instructions available + fnstenv
–  4 clear ECX instructions (ECX used as counter)
–  1 pop EBX
–  1 move key
–  6 loop blocks
–  1 loop instruction

  No-interation between some portions permits then to be
randomly exchangeable (difficult to find patterns)

37 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Actual limitations and proposals

  The truth is: It’s impossible to detect this kind of
shellcode just using pattern matching
–  I’m not saying that it is useful in anyway

  What about behavioural analysis? Network traffic
disassembly? Code emulation?
–  Assuming the perfect world, where the computational power is

unlimited maybe it is easy... But in the real world, is it possible?

38 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

So, how it can be detected?

  Disassembling of the network traffic
–  Lots of false positives
–  Are you sure you are really analysing the payload?

»  What if the vuln. affects the underlying protocol layer?
»  What about session reassembly?
»  What if......... -> I DON’T CARE, anyway an IPS need to know

about that

  To avoid the false positives we need a ‘simulator’ to
follow the actual code logic:
–  Support to multi-architectures

39 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Malicious Code Protector

  Check Point Patent (US Patent 20070089171)

  Disassembly of the network traffic
»  Intelligent Disassembler
» CPU Emulation
» Meta Instructions
» Heuristic decision function

  If it’s a shellcode (probably a false positive, i.e.: a gif image), try to
‘follow’ it
–  Disassembler just works with x86 and SPARC code
–  High rate of false positivies
–  Performance-penalti!
–  Still the best option, but... What improvements are needed?

40 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

What to do?

  Disassemble input
–  Translate bytes into assembly instructions
–  Follow branching instructions (jumps & calls)

  Determine non-code probability
–  Invalid instructions (e.g. HLT)
–  Uncommon instructions (e.g. LAHF)
–  Invalid memory access (e.g. use of un-initialized registers) -> DANGEROUS

  Emulate execution
–  Assembly level “Stateful Inspection”
–  Keep track of CPU registers & stack
–  Identify code logic (Meta Instructions)

  Heuristic decision function
–  Evaluate the confidence level and decide if input is malicious or not

41 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Architecture Overview – Splitting the problem in
layers

Still need to be implemented

X86/pa-risc/sparc

Streaming

Dumb Disassembly

Well-known Dangerous
Sequences

Acelleration Layer (Vuln. Research Center)

Well-known Return Address
(loading and library addresses)

x86 pa-risc Target-aware
information sparc

X86/pa-risc/sparc

X86/pa-risc/sparc

X86/pa-risc/sparc Smart Disassembler

Vuln. Research Center Automatic Debuggers

Second inspection

42 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

A real traffic...

0x90’ 0x90 0x90…

The actual payload: \x90\x90\x90…

Attack detected

Packet 2 Packet 3 Packet 1

Still need to be implemented

X86/pa-risc/sparc

Acelleration Layer (Vuln. Research Center)
Well known threats or bad packets

x86 pa-risc sparc

X86/pa-risc/sparc

X86/pa-risc/sparc

X86/pa-risc/sparc

Vuln. Research Center

Target run linux on intel, inspect x86

Looking for cpuid, call $+4, jmp/call/pop, fnstenv

Looking for valid Linux return addresses (stack, heap, text library)

Follow the instructions and create state meta-information

Packet Reassembly/Protocol Inspection

Couting valid x86 instructions

Inspection
Supression

Re-run
If created
buffers

New techniques, well-known false positives, automatic debuggers

Attack detected

Attack detected

Attack detected

Attack detected

Attack detected

Re-inspection

Attack detected

43 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Worst Case Scenarios

  ASM Arch Identifier
–  An attacker sends a crafted packet with many different arch opcodes on the

payload (trying to force multiple layers of inspection)
–  Even valid shellcodes maybe coded as multi-arch ones

»  Architecture Spanning Shellcode – Phrack Magazine
–  To avoid that, when we detect multiple architectures opcodes (more than 7 bytes

each) we automaticly block the traffic and alert for that condition or (configuration
option) we just inspect for the target platform

  Spider loops
–  An attacker may send a crafted packet to force as many as possible spiders to

be created
–  To optimize that, we do return address lookup (searching for valid return address

in windows dlls, binaries mappings, pool address for the .text, others)
–  Jmps to jmps receive higher scores – the suppression layers will learn and block

  Inspection suppression
–  Optimization in each layer to avoid go to high layers for an already-seen traffic

44 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

‘Smart’ Disassembly

  Plugin system, permitting the addition of architectures
(x86 32 and 64 bits, power, sparc, pa-risc)

  Detect ‘dangerous’ instructions – avoid instruction mis-
alignments:

  By the way: This is also a ‘trick’, by Gera to GetEIP

45 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Gera’s method

After call instruction
EIP points here

Before call
instruction

EIP stored in EAX

46 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Call4 decoder

/*
 * the %ecx register contains the size of assembly code (shellcode).
 *
 * pushl $0x01
 * ^^
 * size of assembly code (shellcode)
 *
 * xorb $0x02,(%eax)
 * ^^
 * number to xor
 */
 call .+4
 ret

 popl %eax
 pushl $0x00 /* <-- size of assembly code (shellcode) */
 popl %ecx
 addb $0xe, %al

label1:
 xorb $0x00,(%eax) /* <-- number to xor */
 incl %eax
 loop label1

/* assembly code (shellcode) goes here */

47 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

‘Smart’ Disassembly

  We can make use of the inherent functionality of the
decoder stub to decode the payload of the network traffic.

  This is possible, but not needed in this case, since we
already spoted a valid code, marking it for further
examination (to avoid false-positives)

  The ‘smart’ disassembly is also layered, each layer avoiding
deeper inspection, and doing that, keeping the performance
in a high-level (still need to be better tested in real world
networks – volunteers?)
–  Emulator inspection supression -> IMPORTANT -> Each layer will

identify attackers forcing the cpu-consumption paths

48 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

‘Smart’ Disassembly

  Fpu instruction + fnstenv + pop = Dangerous sequence =
Detection in a lower-layer of the Shikata ga nai decoder

  Even if not (some changes in the Shikata ga nai decoder
can avoid it), the Smart disassembly will:
–  Detect the meta-construction: fpu instruction + fnstenv + pop

and know where is the EIP
–  Will follow the clear ecx + loop to know what is the block

condition
–  Will see the loop and will re-inspect the generated buffer after

decoding

49 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Detecting the beginning of the code

  Since we don’t know where in the input the shellcode
begins we disassemble from every byte offset.

  Each offset is disassembled only once, the instruction is
cached in a look-up table.

  Input bytes are processed by a ‘Spider’.
  We drop a Spider on every offset.
  Multiple spiders scan the input in parallel.

6A 55 F4 4B 90 33 C0 EB 19 5E

31 C9 81 E9 89 FF FF FF 81 36

80 BF 32 94 81 EE FC FF FF FF

E2 F2 EB 05 E8 E2 FF FF FF 03

0:

10:

20:

30:

Input Stream Of Bytes

50 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Spiders in action

  Since spiders follow branching instructions (calls &
jumps) –
A single spider may travel in several paths across the
input buffer.

  Each of these paths is called a Flow.

6A 55 F4 4B 90 33 C0 EB 19 5E

31 C9 81 E9 89 FF FF FF 81 36

80 BF 32 94 81 EE FC FF FF FF

E2 F2 EB 05 E8 E2 FF FF FF 03

0:

10:

20:

30:

Input Stream Of Bytes

51 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Meta Instructions

  Process each instruction in the context of previous
instructions.

  Identify code logic common to malicious code:
–  Decryption Loop
–  EIP Calculation
–  PEB Access
–  SEH Access

  Also, target-OS aware
–  Interrupts

»  ‘INT 0x80’: Linux System Call
»  Invalid in Windows

52 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Detecting target-based decoders

  Detect jmps/calls to .text area looking for the loading address space (even in ASLR-enabled
systems, those addresses are fixed in a range)

  Also, matching valid return addresses try to locate the start offset in the input buffer

  Detection of FPU instructions followed by fnstenv, CPUID instructions and others like the
misalignment constructions in earlier slides

  VM detection code constructions:
–  sidt, sgdt and sldt and comparisons of returned values (in Linux IDT is at 0xc0ffffff (kernel-

mode memory), in Windows (0x80ffffff)). In VMware (0xffXXXXXX) and in VirtualPC
(0xe8XXXXXX). So, if the returned value by sidt is greater than 0xd0 it's in a VM, if its lower,
its in the real OS). GDT is also in the same range in Windows and Linux. LDT is 0x0000 in
the real OS

–  There is also VMWare specific instructions, like the following construction:
 mov EAX, 564D5868 -> VMXh
 xor EBX, EBX -> Of course if the attacker knows it's already zeroed, he may

skip that (that’s why is dangerous to assume the use of uninitialized registers as low-risk)
 mov ECX, 0A -> Guest-to-host communication
 mov EDX, 5658 -> VX
 in EAX, DX -> Check if VMWARE is active
 cmp EBX, 564D5868 -> The VMXh is a magic value which will be moved to EBX if

VMWare do exist, otherwise it will be 0.

53 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Confidence indexing

  Configured in a per-rule, per-protection way, extended to the disassembler
–  Per instruction
–  Per meta-construction

  If the ‘dumb’ disassembler detects a valid instruction number (configured by the
user) it will add for example, 10% to the chances of this being an attack
–  This value is proportional to the size of the payload itself (smaller

payloads smaller the changes to have valid instructions) -> Tks to Julio
Auto for the idea

  If the ‘smart’ disassembler detects a dangerous construction forcing misaligment
for example, it will add 70% to the chances of this being an attack (so the total
now is 80%)

  Let’s assume a company who defined that, for the company to be considered an
attack, we need to be 90% sure of that... It’s still not an attack

  A fragmented packet may receive 5%... It’s still not an attack

54 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Innocent portion of a packet been analyzed

6A 55 F4 4B 90 33 C0 EB 19 5E

31 C9 81 E9 89 FF FF FF 81 36

80 BF 32 94 81 EE FC FF FF FF

E2 F2 EB 05 E8 E2 FF FF FF 03

0:

10:

20:

30:

PUSH 55

Spider #1
Start Index 0 Current Index

Description

Threat Weight

HLT

ReadyValid Instruction. Inc Threat Weight.Invalid Instruction. Dec Threat Weight.

-02

55

C9

BF

F2

Good Bad

55 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Malicious portion of a packet been analyzed

E16A F4 51 31 C0 53 6A 02 89

04 66 CD 80 89 FF FF FF 81

80

36

BF 32 94 81 EE FC FF FF FF

E2 F2 EB 05 E8 E2 FF FF FF 03

0:

10:

20:

30:

Spider #2
Start Index 4 Current Index

MOV ECXPUSH 2PUSH
EBX

-

ReadyDescription

Threat Weight

XOR EAX, EAX

Valid Instruction. Inc Threat Weight.Interrupt 0x80 Meta Instruction. Inc Threat Weight.

PUSH
ECX

C9

BF

F2

6E

ADD AL, 0x66 INT 0x80

4578101214

56 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Decoder analyzed

2415

JMP +21

15

6F 6F 6F 6F 6F 6F 6F 42 42 42

8B 89 E8 77 EB 15 5B 53 68 AD

01 78 58 FF D0 31 C9 B1 11 58

FD 31 C0 48 C3 E8 E6 FF FF FF

0:

10:

20:

30:

42

AA

E2

73

Spider #13
Start Index 15 Current Index

POP
EAX

PUSH
EBX

-

Description

Threat Weight

CALL -26

POP
EBX PUSH

 0x7801AAAD CALL EAX

 JMP +26

15381718192425

ReadyNormal Instruction. Inc Threat Weight.Copy EIP Meta Instruction. Inc Threat Weight.Valid Instruction. Inc Threat Weight.

57 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Vulnerability Research Center

  Create a distributed analysing machines for each architecture used in the
company seens interesting to really debug the payload execution
–  Can be offered as a service, avoiding false-positivies and new exploiting

mechanisms

  Easy to do further automated investigation to validate shellcodes and
detecting new wide-spreeding malwares, encoding techniques and false

 positives
–  No performance penalti, since the smart disassembly will guarantee that just a

small portion of the traffic will trigger this inspection level
–  Emulator inspection supression -> IMPORTANT! -> REMEMBER that in the

previous slides? It’s because otherwise an attacker can just generate code that
will force a lot of traffic to go to the vulnerability research center

58 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Implementation: Cell Architecture

  Powerful hybrid multi-core technology

  128 registers files of 128 bits each:
–  Since each SPU register can hold multiple fixed (or floating) point values of different sizes, GDB offers to us

a data structure that can be accessed with different formats:

(gdb) ptype $r70
type = union __gdb_builtin_type_vec128 {
int128_t uint128;
float v4_float[4];
int32_t v4_int32[4];
int16_t v8_int16[8];
int8_t v16_int8[16];
}

–  So, specifying the field in the data structure, we can update it:
(gdb) p $r70.uint128
$1 = 0x00018ff000018ff000018ff000018ff0
(gdb) set $r70.v4_int32[2]=0xdeadbeef
(gdb) p $r70.uint128
$2 = 0x00018ff000018ff0deadbeef00018ff0

  256KB Local Storage -> Mainly used for log suppression and caching (avoiding calls to the PPU)

  Threads managed by the PPU, which handles the traffic and chooses the SPU to process it (the spiders) ->
Resident threads to avoid the thread creation overhead

  Thread abstraction – Easy to port (here I’m using a x86 VM instead of a Cell simulator for instance)

59 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

Future

  I can’t foresee the future!

  My guess is this kind of technology will be improved, mainly after some
disasters:
–  Conficker worm was really successful even exploiting an already patched

vulnerability (for which most vendors had signatures too)
–  This worm used a piece of payload taken from a public tool (Metasploit unreliable

remote way to differentiate between XP SP1 and SP2)

  We all are aware that this kind of protection will not prevent everything, but
will give a good level of protection against well-known payload strategies

  Still missing performance numbers, since all the Cell-related stuff are being
developed in a Playstation3 (I don’t have high-performance network cards
for testing)

  Need to define the confidence level defaults

60 ©2009 COSEINC. All rights reserved. CONFIDENTIAL

End! Really !?

Rodrigo Rubira Branco (BSDaemon)
Senior Vulnerability Researcher

Vulnerability Research Labs (VRL) – COSEINC
rodrigo_branco *noSPAM* research.coseinc.com

