

Protecting Hosts in IPv6 Networks

A discussion of security controls on the host level

Enno Rey erey@ernw.de

TROOPERS

Who Am I

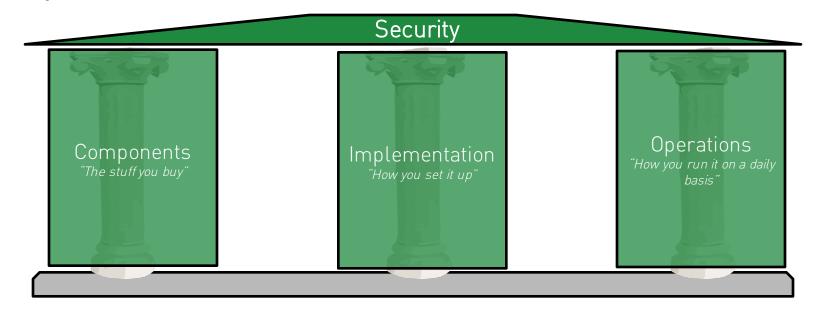
- Founder (2001) and head of ERNW, a company providing vendor-independent security assessment & consulting services.

Old-school network guy involved with IPv6 since 1999.

© ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg

Agenda

 Some preliminary remarks on the operations perspective


 Protection of IPv6 is a matter of network infrastructure (controls), mostly.

- Discussion of specific controls

Keep in Mind...

Please identify the most important pillar!

🗘 TROOPERS

So, when thinking about security controls...

- Two essential factors must be evaluated:

- Security benefit
 - "How much do we gain, security-wise?"
 - "What's the risk reduction of this control?"
- Operational feasibility
 - "What's the operational effort to do it?"
 - Pls note: opex, not capex, counts!

- For some more discussion on these see also:

- http://www.insinuator.net/2011/05/evaluating-operational-feasibility/
- http://www.insinuator.net/2010/12/security-benefit-operational-impact-or-the-illusion-of-infinite-resources/

Evaluating operational effort

- For each potential control the following points should be taken into account

- How many lines of code/configuration does it need?
 - Can it be implemented by means of templates or scripts? Effort needed for this?
- To what degree does the implementation differ in different scenarios?
 - Per system/subnet/site?
 - Can "the difference" be scripted?
 - Taken from another source (e.g. central database)
 - "Calculated" (e.g. neighboring routers on local link)
- How much additional configuration is needed for previous functionality?
 - E.g. to pass legitimate traffic in case of ("new") application of ACLs?
- "Business impact" incl. number of associated support/helpdesk calls.
- Cost for deployment of additional hardware/licenses.
 - Cost for their initial procurement is CAPEX (=> not relevant here).

The Concept of "Deviation from Default"

- By this term we designate any deviation from a default setting of any IT system which happens by means of some configuration step(s).
 - Change some parameter from "red" to "black" or 0 to 1 or ...

- *Deviation from default* always requires OPEX.

- In particular if to be maintained through affected systems' lifecycle.
- Even more so if affected system base is heterogeneous.
- By its very nature, OPEX is limited. You knew that, right? ;-)
- *Deviation from default* doesn't scale.
 - \$SEGMENT might have 20 systems today. And tomorrow?
- *Deviation from default* adds complexity.
 - In particular if it's "just some small modifications" combined...
 - Remember RFC 3439's *Coupling Principle*?

IPv6 Security Controls on the Host Level

© ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg

#8 www.ernw.de

I 🗘 TROOPERS

Protection of IPv6 is a Matter of Network Infrastructure (controls), Mostly.

- In the following we assume that some (IPv6 specific) security controls have already been applied.
- This leaves two main questions
 - What's the residual risk from a host's perspective?
 - How to address that?

valuation of IPv6 Risks			Risk Rating in IPv4	Risk Delta via IPv6, after	
	Class	Specific Threat	Networks	Implementation of Controls	Comments
fter NW Layer Controls					no dedicated infrastructure controls
	Traffic Redirection	ARP/NA Spoofing	high risk	equal risk	planned
om a case study					no dedicated infrastructure controls
	Traffic Redirection	DNS Spoofing	medium risk	equal risk	planned
		Spoofing of Default GW			no dedicated infrastructure controls
	Traffic Redirection	through DHCP	high risk	significantly lower risk	planned as attack no longer possible
					addressed partially by "isolation on
	Traffic Redirection	Route Injection	medium risk	equal risk	routing layer" approach
					no dedicated infrastructure controls
	Traffic Redirection	Attacks against FHRP	medium risk	equal risk	planned
					RA Guard & DHCPv6 Guard, risk
					expected to decrease over time due
	Traffic Redirection	Rogue RAs	high risk	slightly increased risk	to RFC 6980
	Attacks against	Modification of DNS resolver			
	Provisioning	through DHCP	high risk	equal risk	DHCPv6 Guard
					addressed partially by "isolation on
					routing layer" approach and by
r initial table(without controls) see: os://www.ernw.de/download/ERNW_TR16_ 6SecSummit_Enterprise_Security_Strateg df	Denial-of-Service	Resource Depletion	medium risk	equal risk	"IPv6 specific filtering"
					addressed (only) partially by RA
	Denial-of-Service	Flooding of Helper Protocols	low risk	slightly increased risk	Guard and DHCPv6 Guard
	Denial-of-Service	Traffic blackholing	high risk	equal risk	RA Guard & DHCPv6 Guard
					addressed by "isolation on routing
	Unauthorized Access	Capability to establish			layer" approach and by "IPv6
	over Network	undesired connections	medium risk	slightly increased risk	specific filtering"

Ev Af

Fror

For https IPv6S y.pdf

Host Level Perspective

Main residual risks (sample/case study)

Denial-of-Service originating from the *local-link*.

- Increased exposure wrt malformed pkts.
- Flooding of helper protocols.

- Unauthorized access

- Less isolation/separation of address space assumed.
- Less protection from security controls on the network infrastructure level.

For Reference

ERNW's IPv6 Hardening Guides, developed together with Antonios Atlasis

¬ Linux [Hard_Linux]

 https://www.ernw.de/download/ERNW_Guide_to_Securely_C onfigure_Linux_Servers_For_IPv6_v1_0.pdf

- Windows [Hard_Windows]

https://www.ernw.de/download/ERNW_Guide_to_Configure_Securely_Windows_Servers_For_IPv6_v1_0.pdf

- OS X [Hard_OSX]

 https://www.ernw.de/download/ERNW_Hardening_IPv6_Mac OS-X_v1_0.pdf

TROOPERS

Host Level Perspective

Main (additional) protection strategies

- "Minimal machine" approach

Remove un-needed (IPv6) functionality (not the full IPv6 stack!), e.g. MLD.

- Static config. of IPv6 parameters

- Keep operational effort & concept of "deviation from default" in mind.
- Tweaking of IPv6-parameters/ behavior
 - ND parameters, MLD, RFC 6980 et.al.
- Local packet filtering
 - Be cautious & keep operations in mind.

🗘 TROOPERS

Minimal Machine

Main potential measures

See also

https://www.insinuator.net/2014/11/mldconsidered-harmful/ https://www.insinuator.net/2014/09/mldand-neighbor-discovery-are-theyrelated/

- On Linux systems MLD can be disabled (or just not be enabled?).
- On Windows systems disabling MLD (via netsh command) creates a state where Neighbor Discovery does not work correctly anymore
 → not recommended.
- If systems are provisioned with static IPv6 addresses, DHCPv6 should be disabled as a service (Windows and Linux).
 - Maybe do the same in SLAAC-only networks?
- On systems with static IPv6 addresses, the processing of router advertisements can be disabled
 - [Hard_Linux], Sect. 5.2 or [Hard_Windows], Sect. 5.4.

TROOPERS

Static Configuration

Main measures

Usually this encompasses

- IP address(es)
- Default gateway(s)
- DNS resolver(s)
- NTP server(s)
- BUT: to work properly/as expected all dynamic mechanisms have to be disabled also.

Disable Dynamic Stuff

This might include

- Disable local processing of RAs
- Disable local processing of ICMPv6 type 137 (*redirects*).

- Disable DHCP(v6) service

🗘 TROOPERS

Suppress RA Processing on Hosts

- Operationally expensive & severe deviation from default.
- Note: just assigning a static IP address might not suffice.
 - E.g. MS Windows systems can still generate additional addresses/interface identifiers.
- Still we know and somewhat understand that most of you have a strong affinity to this approach
 - Human (and in particular: sysadmin) nature wants to *control* things...

TROOPERS

Overview for Different OS

- MS Windows - netsh int ipv6 set int [index] routerdiscovery=disabled
- FreeBSD

-

- sysctl net.inet6.ip6.accept_rtadv=0
- Do not run/invoke rtsold. (but the above prevents this anyway).

Linux

- Sth like: echo 0 >
 - /proc/sys/net/ipv6/conf/*/accept_ra
- See also IPv6 sect. of https://www.kernel.org/doc/Documentation/networking/ipsysctl.txt

Disable IPCMPv6 137

- Linux

- net.ipv6.conf.default.accept_redirects = 0

- Windows

 netsh interface ipv6 set global icmpredirects=disabled

Tweaking Parameters

Main potential measures

- Use of MLDv2 only

- E.g. see [Hard_Linux], Sect. 5.4.
- Enabling/configuration of a behavior that follows RFC 6980, if that is not default state of an OS (for example, it actually *is* the default for Linux).
- .
 - Additional measures as described in [Hard_Linux], Sect. 5.4

MLDv2 Only

- Linux:

- net.ipv6.conf.all.force_mld_version = 2

Local Packet Filtering

Some warning

This should be an *ultima ratio* approach.

- Be very careful

 Look at mailing list archives for people who shot themselves in the foot (e.g. by filtering ND/RA messages).

Case Study

Christopher Werny @bcp38_

Following

How to kill your wifi in a heartbeat: Apply v6 CPU ACLs to WLC and forget to permit fe80::/10. :(**#TR16 #fail**

Local Packet Filtering

- RFC 4890 *Recommendations for Filtering ICMPv6 Messages in Firewalls*
- [Hard_Linux] & [Hard_Windows]

- Use \$TECH available anyway on (or highly integrated with) \$PLATFORM
 - BSD: pf/ipfw6
 - Linux: nftables/ip6tables
 - Windows: Windows Firewall

Conclusions & Summary

- Let me repeat this: IPv6 security SHOULD be addressed on the infrastructure level.
- There's some additional stuff which can be done on the host level.
 - Usually in segments with very high security requirements (and a low number of systems).
- Keep operational impact of these measures in mind!
 - Going with a "static" approach quickly becomes complicated & cumbersome...

There's never enough time...

THANK YOU...

@Enno_Insinuator

erey@ernw.de

...for yours!

Slides & further information: https://www.troopers.de https://www.insinuator.net (..soon)

Questions?

© ERNW GmbH | Carl-Bosch-Str. 4 | D-69115 Heidelberg

Image Credits

Icons made by <u>Freepik</u> from <u>www.flaticon.com</u> are licensed by CC 3.0 BY.