
Testing IPv6 Firewalls with ft6

Oliver Eggert

IPv6 Security Summit @ TROOPERS14

March 17th, 2014

Outline

1 The beginnings
2 Design of ft6
3 Tests done by ft6
4 Live Demo
5 Testing ip6tables
6 Pitfalls
7 (optionally: writing your own tests)

Oliver Eggert Testing IPv6 Firewalls with ft6 2/ 93

The beginnings

“IPv6 Intrusion Detection System” Project (2011 - 2013)
at University of Potsdam
funded by “Bundesministerium für Bildung und Forschung”

Oliver Eggert Testing IPv6 Firewalls with ft6 3/ 93

The beginnings – motivation & goal

IPv6 adoption continues to rise. However, lack of IPv6-enabled tools for:
analyzing threat level
checking firewall/IDS configuration
checking firewall/IDS capabilities
checking IPv6 “readiness”

Oliver Eggert Testing IPv6 Firewalls with ft6 4/ 93

The beginnings: contributions

IPv6 Darknet
not advertised
check who’s scanning
/48 network
less than 1200 packets in 9 months

Oliver Eggert Testing IPv6 Firewalls with ft6 5/ 93

The beginnings: contributions

IPv6 Honeypot
check what attackers are doing
honeydv6
emulates a whole virtual network and services

Oliver Eggert Testing IPv6 Firewalls with ft6 6/ 93

The beginnings: contributions

IPv6 IDS
Snort-Plugin: check Martin Schütte’s talk tomorrow!

Oliver Eggert Testing IPv6 Firewalls with ft6 7/ 93

The beginnings: contributions

Performance Benchmarks
how well does IPv6-enabled hardware perform?
what impact do “additional” features of IPv6 have?

Oliver Eggert Testing IPv6 Firewalls with ft6 8/ 93

The beginnings: information

project is over now
check results and publications at:

www.idsv6.de

Oliver Eggert Testing IPv6 Firewalls with ft6 9/ 93

www.idsv6.de

Outline

1 The beginnings
2 Design of ft6
3 Tests done by ft6
4 Live Demo
5 Testing ip6tables
6 Pitfalls
7 (optionally: writing your own tests)

Oliver Eggert Testing IPv6 Firewalls with ft6 10/ 93

Design of ft6 – motivation

Why should I?

you are responsible for the network
you have to / want to migrate to IPv6
can you switch now?
not really a good methodology for

telling if your device supports IPv6
comparing firewalls
finding problems in your configuration

Oliver Eggert Testing IPv6 Firewalls with ft6 11/ 93

Design of ft6 – motivation

checking for “Supports IPv6”-stickers is not an option!

Oliver Eggert Testing IPv6 Firewalls with ft6 12/ 93

Design of ft6 – motivation

you must check for yourself
why is this hard?
lot of SHOULDs, MUSTs and REQUIREDs for IPv6
across lot of different RFCs
vague
best practices
still evolving, hard to keep track

Oliver Eggert Testing IPv6 Firewalls with ft6 13/ 93

Design of ft6 – motivation

ft6 should help
goal: easy to configure and visualize results
easily reproducable, comparable
usually tedious, error prone work
provide starting point for firewall evaluation
also consider testing for performance, attacks on local network
can act as a framework for new tests

Oliver Eggert Testing IPv6 Firewalls with ft6 14/ 93

Design of ft6 – Architecture

ft6 is a client-server application

requires machines on both sides of your firewall
place machines not more than one hop away from firewall
one open port

Oliver Eggert Testing IPv6 Firewalls with ft6 15/ 93

Design of ft6 – Architecture

ft6 is a client-server application
requires machines on both sides of your firewall

place machines not more than one hop away from firewall
one open port

Oliver Eggert Testing IPv6 Firewalls with ft6 15/ 93

Design of ft6 – Architecture

ft6 is a client-server application
requires machines on both sides of your firewall
place machines not more than one hop away from firewall

one open port

Oliver Eggert Testing IPv6 Firewalls with ft6 15/ 93

Design of ft6 – Architecture

ft6 is a client-server application
requires machines on both sides of your firewall
place machines not more than one hop away from firewall
one open port

Oliver Eggert Testing IPv6 Firewalls with ft6 15/ 93

Design of ft6 – Running ft6

Client and Server perform a handshake
Server begins to sniffs

Client starts sending packets
Some packts pass the firewall
Others are dropped

Oliver Eggert Testing IPv6 Firewalls with ft6 16/ 93

Design of ft6 – Running ft6

Client and Server perform a handshake
Server begins to sniffs
Client starts sending packets

Some packts pass the firewall
Others are dropped

Oliver Eggert Testing IPv6 Firewalls with ft6 16/ 93

Design of ft6 – Running ft6

Client and Server perform a handshake
Server begins to sniffs
Client starts sending packets
Some packts pass the firewall

Others are dropped

Oliver Eggert Testing IPv6 Firewalls with ft6 16/ 93

Design of ft6 – Running ft6

Client and Server perform a handshake
Server begins to sniffs
Client starts sending packets
Some packts pass the firewall
Others are dropped

Oliver Eggert Testing IPv6 Firewalls with ft6 16/ 93

Design of ft6 – Running ft6

Server sends back list of packets it recieved

Client figures out what went missing and displays result

Oliver Eggert Testing IPv6 Firewalls with ft6 17/ 93

Design of ft6 – Running ft6

Server sends back list of packets it recieved
Client figures out what went missing and displays result

Oliver Eggert Testing IPv6 Firewalls with ft6 17/ 93

Design of ft6 – Design of ft6

open-source (Creative Commons BY-NC-SA 3.0)
uses scapy 2.2.0, python 2.7, PyQt 4
developed on (2.6.32), tested with more recent (3.7.1)
should work on Windows 7, Mac OS X

Oliver Eggert Testing IPv6 Firewalls with ft6 18/ 93

Outline

1 The beginnings
2 Design of ft6
3 Tests done by ft6
4 Live Demo
5 Testing ip6tables
6 Pitfalls
7 (optionally: writing your own tests)

Oliver Eggert Testing IPv6 Firewalls with ft6 19/ 93

Tests done by ft6

written by EANTC
http://www.idsv6.de/Downloads/
EANTC-IPv6-IDS-FW-Abstract-Test-Suite_v1.0-public.pdf
ft6 does 9 of those

Oliver Eggert Testing IPv6 Firewalls with ft6 20/ 93

http://www.idsv6.de/Downloads/EANTC-IPv6-IDS-FW-Abstract-Test-Suite_v1.0-public.pdf
http://www.idsv6.de/Downloads/EANTC-IPv6-IDS-FW-Abstract-Test-Suite_v1.0-public.pdf

Tests done by ft6 – Test 1: ICMPv6 filtering

Check if the firewall correctly forwards and discards ICMPv6 Packets.
informational, diagnostic messages
Identified by type and code field.
+-+
| Type | Code | Checksum |
+-+
| |
+ Message Body +
| |

RFC 4890 “Recommendations for Filtering ICMPv6 Messages in Firewalls”

Oliver Eggert Testing IPv6 Firewalls with ft6 21/ 93

Tests done by ft6 – Test 1: ICMPv6 filtering

belong to one of 3 groups: mandatory, optional and nonfiltered
1 mandatory: Always reject them.

local Messages (Neighbor Solicitation, Neighbor Advertisement).
100, 101, 127, 130 - 143, 148, 149, 151 - 153, 200, 201, 255.

2 optional: Reject unless needed.
unassigned types and codes
3 (Code 1), 4 (Code 0), 4-99, 102 - 126, 144 - 147, 150, 154
- 199, 202 - 254.

3 nonfiltered: Always forward them.
neccessary for correct operation (echo request, echo reply, packet too big).
1, 2, 3 (Code 0), 4 (Code 1), 4 (Code 2), 128, 129.

Oliver Eggert Testing IPv6 Firewalls with ft6 22/ 93

Tests done by ft6 – Test 2: Routing Header

Check if the firewall correctly forwards and discards packets containing a
Routing Header.
Used to specify a list of nodes a packet has to visit
RFC 5095 “Deprecation of Type 0 Routing Headers in IPv6”
loops → denial of service
applies to Routing Header type 0 only

Oliver Eggert Testing IPv6 Firewalls with ft6 23/ 93

Tests done by ft6 – Test 2: Routing Header

Depends upon type and segments-left field.
+-+
| Next Header | Hdr Ext Len | Routing Type | Segments Left |
+-+
| |
. type-specific data .
| |
+-+

Oliver Eggert Testing IPv6 Firewalls with ft6 24/ 93

Tests done by ft6 – Test 2: Routing Header

RH-type segs. left action
0 ̸= 0 drop
2 ̸= 1 drop

others ̸= 0 drop

Oliver Eggert Testing IPv6 Firewalls with ft6 25/ 93

Tests done by ft6 – Test 3: Chained Extension Headers

Check if the firewall correctly forwards and discards packets containing a
number of different Extension Headers.
DSTOPT header at most twice (before a RH, before Layer 4)
HBH Options only after base IPv6 header
others: at most once (should)
avoid ambiguity, prevent denial of service
RFC 2460 “Internet Protocol, Version 6 (IPv6) Specification”

Oliver Eggert Testing IPv6 Firewalls with ft6 26/ 93

Tests done by ft6 – Test 3: Chained Extension Headers

1 A single DSTOPT. Should be forwarded.
2 Two DSTOPTs in a row. Should be dropped.
3 DSTOPT, Routing Header, DSTOPT. Forward.
4 A single HBH. Forward.
5 Two HBHs in a row. Drop.
6 A DSTOPT, followed by one HBH. Drop.
7 HBH, DSTOPT, Routing Header, HBH. Drop.

Oliver Eggert Testing IPv6 Firewalls with ft6 27/ 93

Tests done by ft6 – Test 4: Overlapping Fragments

Check if the firewall correctly detects overlapping fragments
Forward only if no overlap
RFC 5722 “Handling of Overlapping IPv6 Fragments”
IPv6 fragments at source & reassembles at destination
fragments controlled by fragment-offset

Oliver Eggert Testing IPv6 Firewalls with ft6 28/ 93

Tests done by ft6 – fragmentation

source want’s to send a packet that is too big

payload is split into chunks
each sent as separate fragment

Oliver Eggert Testing IPv6 Firewalls with ft6 29/ 93

Tests done by ft6 – fragmentation

source want’s to send a packet that is too big

payload is split into chunks
each sent as separate fragment

Oliver Eggert Testing IPv6 Firewalls with ft6 29/ 93

Tests done by ft6 – reassembly

destination receives fragment one, allocates buffer

Oliver Eggert Testing IPv6 Firewalls with ft6 30/ 93

Tests done by ft6 – reassembly

virtually splits buffer into slots

Oliver Eggert Testing IPv6 Firewalls with ft6 30/ 93

Tests done by ft6 – reassembly

“target-slot” is determined by fragment-offset

Oliver Eggert Testing IPv6 Firewalls with ft6 30/ 93

Tests done by ft6 – reassembly

data is copied accordingly

Oliver Eggert Testing IPv6 Firewalls with ft6 30/ 93

Tests done by ft6 – reassembly

same procedure for second fragment

Oliver Eggert Testing IPv6 Firewalls with ft6 30/ 93

Tests done by ft6 – reassembly

same procedure for second fragment

Oliver Eggert Testing IPv6 Firewalls with ft6 30/ 93

Tests done by ft6 – reassembly

same procedure for third fragment

Oliver Eggert Testing IPv6 Firewalls with ft6 30/ 93

Tests done by ft6 – reassembly

same procedure for third fragment

Oliver Eggert Testing IPv6 Firewalls with ft6 30/ 93

Tests done by ft6 – reassembly

all fragments have arrived

Oliver Eggert Testing IPv6 Firewalls with ft6 30/ 93

Tests done by ft6 – reassembly

reassembly complete

Oliver Eggert Testing IPv6 Firewalls with ft6 30/ 93

Tests done by ft6 – attack

first fragment arrives. It carries a TCP-Header

Oliver Eggert Testing IPv6 Firewalls with ft6 31/ 93

Tests done by ft6 – attack

data is copied into buffer

Oliver Eggert Testing IPv6 Firewalls with ft6 31/ 93

Tests done by ft6 – attack

second fragment has “wrong” offset

Oliver Eggert Testing IPv6 Firewalls with ft6 31/ 93

Tests done by ft6 – attack

still, data get’s copied

Oliver Eggert Testing IPv6 Firewalls with ft6 31/ 93

Tests done by ft6 – attack

last fragment arrives

Oliver Eggert Testing IPv6 Firewalls with ft6 31/ 93

Tests done by ft6 – attack

data get’s copied

Oliver Eggert Testing IPv6 Firewalls with ft6 31/ 93

Tests done by ft6 – attack

reassembly complete, firewall bypassed

Oliver Eggert Testing IPv6 Firewalls with ft6 31/ 93

Tests done by ft6 – Test 4: Overlapping Fragments

1 Fragments w/o overlap. Should be forwarded.
2 Overlapping fragments that overwrite the TCP-port. Drop
3 Overlapping fragments that overwrite the payload. Drop

Oliver Eggert Testing IPv6 Firewalls with ft6 32/ 93

Tests done by ft6 – Tests 5 & 6: Tiny IPv6 Fragments

Check if the firewall inspects the second fragment if no Layer 4 is present in
the first fragment
Firewall should wait for next fragment before deciding
http://tools.ietf.org/id/
draft-gont-6man-oversized-header-chain-02.txt
Check if the firewall respects the timeout as specified in the rfc
prevent resource starvation
allow for “some” lag
drop after 60 seconds
RFC 2460 “Internet Protocol, Version 6 (IPv6) Specification”

Oliver Eggert Testing IPv6 Firewalls with ft6 33/ 93

http://tools.ietf.org/id/draft-gont-6man-oversized-header-chain-02.txt
http://tools.ietf.org/id/draft-gont-6man-oversized-header-chain-02.txt

Tests done by ft6 – Tests 5 & 6: Tiny IPv6 Fragments

1 Tiny-Fragment with allowed port in second fragment. Forward.
2 Tiny-Fragment with denied port in second fragment. Drop.
3 Send first fragment, wait 59 seconds, send last fragment. Forward.
4 Send first fragment, wait 61 seconds, send last fragment. Drop.

Oliver Eggert Testing IPv6 Firewalls with ft6 34/ 93

Tests done by ft6 – Test 7: Excessive HBH/DSTOPT Options

Check if the firewall blocks packets with multiple options
IPv6 supports different option types per header
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -
| Option Type | Opt Data Len | Option Data
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- - - - - - - - -

can be daisy-chained
Most option types should occur at most once
Only Pad1 and PadN are allowed multiple times
prevent ambiguity, prevent denial of service
RFC 4942 “IPv6 Transition/Coexistence Security Considerations”

Oliver Eggert Testing IPv6 Firewalls with ft6 35/ 93

Tests done by ft6 – Test 7: Excessive HBH/DSTOPT Options

Each variant has duplicate options. Each should be dropped.
1 Jumbo Payload, PadN, Jumbo Payload.
2 Router Alert, Pad1, Router Alert
3 Quick Start, Tunnel Encapsulation Limit, PadN, Quick Start
4 RPL Option, PadN, RPL Option

Oliver Eggert Testing IPv6 Firewalls with ft6 36/ 93

Tests done by ft6 – Test 8: PadN Covert Channel

Check if the firewall can block packets with non-zero padding
Used to align options
(usually) don’t carry a payload
RFC 4942 “IPv6 Transition/Coexistence Security Considerations”

Oliver Eggert Testing IPv6 Firewalls with ft6 37/ 93

Tests done by ft6 – Test 8: PadN Covert Channel

1 Padding with payload all zeroes in a HBH. Forward.
2 Padding with other payload in a HBH. Drop.
3 Padding with payload all zeroes in a DSTOPT. Forward.
4 Padding with other payload in a DSTOPT. Drop.

Oliver Eggert Testing IPv6 Firewalls with ft6 38/ 93

Tests done by ft6 – Test 9: Address Scopes

Verify that the firewall does not route traffic from an inappropriate scope.
1 ff00::/16 (multicast)
2 fe80::/10 (link local)

RFC 4942 “IPv6 Transition/Coexistence Security Considerations”
256 packets with source addresses from group 1. Drop.
16 packets with source addresses from group 2. Drop.

Oliver Eggert Testing IPv6 Firewalls with ft6 39/ 93

Outline

1 The beginnings
2 Design of ft6
3 Tests done by ft6
4 Live Demo
5 Testing ip6tables
6 Pitfalls
7 (optionally: writing your own tests)

Oliver Eggert Testing IPv6 Firewalls with ft6 40/ 93

Live Demo

Live Demo

Oliver Eggert Testing IPv6 Firewalls with ft6 41/ 93

Outline

1 The beginnings
2 Design of ft6
3 Tests done by ft6
4 Live Demo
5 Testing ip6tables
6 Pitfalls
7 (optionally: writing your own tests)

Oliver Eggert Testing IPv6 Firewalls with ft6 42/ 93

Testing ip6tables – setup

Linux grml 3.7.1-grml-amd64 Debian 3.7.9+grml.1 x86_64
ip6tables 1.4.18
ft6 2013-07-28
Python 2.7.3
Scapy 2.2.0

Oliver Eggert Testing IPv6 Firewalls with ft6 43/ 93

Testing ip6tables – procedure

use a “default” configuration
perform test
if test fails:

try to improve config
perform test again

Oliver Eggert Testing IPv6 Firewalls with ft6 44/ 93

Testing ip6tables – default configuration

ip6tables -A FORWARD -p tcp --dport 80 -j ACCEPT
ip6tables -A FORWARD -p udp --dport 80 -j ACCEPT
ip6tables -A FORWARD -m state --state ESTABLISHED,RELATED -j ACCEPT
ip6tables -P FORWARD DROP

Oliver Eggert Testing IPv6 Firewalls with ft6 45/ 93

Testing ip6tables – Results

test basic config improved rules
ICMPv6 Filtering 7 3

Routing Header 7 3

Header Chain 7 7

Overlapping Fragments 3 3

Tiny IPv6 Fragments 7 7

Excessive HBH Options 7 3

PadN Covert Channel 7 7

Address Scope 3 3

Oliver Eggert Testing IPv6 Firewalls with ft6 46/ 93

Testing ip6tables – Test 1: ICMPv6 Filtering

Check how the firewall handles ICMPv6-messages according to the three groups
mandatory, optional, nonfiltered.

default config

3 mandatory: all dropped
3 optional: all dropped
7 nonfiltered: all dropped

Oliver Eggert Testing IPv6 Firewalls with ft6 47/ 93

Testing ip6tables – Test 1: ICMPv6 Filtering

Cause:
policy is DROP

improved configuration:

ip6tables -A FORWARD -p icmpv6 --icmpv6-type destination-unreachable \
-j ACCEPT

ip6tables -A FORWARD -p icmpv6 --icmpv6-type packet-too-big \
-j ACCEPT

ip6tables -A FORWARD -p icmpv6 --icmpv6-type ttl-zero-during-transit \
-j ACCEPT

Oliver Eggert Testing IPv6 Firewalls with ft6 48/ 93

Testing ip6tables – Test 1: ICMPv6 Filtering

improved configuration (cont.):

ip6tables -A FORWARD -p icmpv6 --icmpv6-type unknown-header-type \
-j ACCEPT

ip6tables -A FORWARD -p icmpv6 --icmpv6-type unknown-option \
-j ACCEPT

ip6tables -A FORWARD -p icmpv6 --icmpv6-type echo-request \
-m limit --limit 900/min -j ACCEPT

ip6tables -A FORWARD -p icmpv6 --icmpv6-type echo-reply \
-m limit --limit 900/min -j ACCEPT

Oliver Eggert Testing IPv6 Firewalls with ft6 49/ 93

Testing ip6tables – Test 1: ICMPv6 Filtering

improved config

3 mandatory: all dropped
3 optional: all dropped
3 nonfiltered: all forwarded

Oliver Eggert Testing IPv6 Firewalls with ft6 50/ 93

Testing ip6tables – Test 1: ICMPv6 Filtering

other firewalls

most allow filtering by type and code
some drop packets even if they are allowed (see pitfalls).

Oliver Eggert Testing IPv6 Firewalls with ft6 51/ 93

Testing ip6tables – Test 2: Routing Header

Check how the firewall handles Routing Headers. Depends on RH type and
segments left.

default config

3 type = 0, segments-left = 0: forwarded
7 type = 0, segments-left ̸= 0: forwarded
7 type = 2, segments-left ̸= 1: forwarded
3 type = 2, segments-left = 1: forwarded
3 type = 200, segments-left = 0: forwarded
7 type = 200, segments-left ̸= 0: forwarded

Oliver Eggert Testing IPv6 Firewalls with ft6 52/ 93

Testing ip6tables – Test 2: Routing Header

Cause:

Packets are directed at allowed port 80
ip6tables does not check the Routing Header

Solution:
Use the ip6tables-module rt. But not like this:

ip6tables -A FORWARD -m rt --rt-type 0 -j ACCEPT

This will accept all packets containng a routing header w/o checking for the
port. Better: handle RH in separate chain.

Oliver Eggert Testing IPv6 Firewalls with ft6 53/ 93

Testing ip6tables – Test 2: Routing Header

improved configuration:

ip6tables -N routinghdr
ip6tables -A routinghdr -m rt --rt-type 0 ! --rt-segsleft 0 -j DROP
ip6tables -A routinghdr -m rt --rt-type 2 ! --rt-segsleft 1 -j DROP
ip6tables -A routinghdr -m rt --rt-type 0 --rt-segsleft 0 -j RETURN
ip6tables -A routinghdr -m rt --rt-type 2 --rt-segsleft 1 -j RETURN
ip6tables -A routinghdr -m rt ! --rt-segsleft 0 --j DROP

ip6tables -A FORWARD -m ipv6header --header ipv6-route --soft \
-j routinghdr

Oliver Eggert Testing IPv6 Firewalls with ft6 54/ 93

Testing ip6tables – Test 2: Routing Header

improved configuration

3 type = 0, segments-left = 0: forwarded
3 type = 0, segments-left ̸= 0: dropped
3 type = 2, segments-left ̸= 1: dropped
3 type = 2, segments-left = 1: forwarded
3 type = 200, segments-left = 0: forwarded
3 type = 200, segments-left ̸= 0: dropped

Oliver Eggert Testing IPv6 Firewalls with ft6 55/ 93

Testing ip6tables – Test 2: Routing Header

other firewalls

some can only drop all or no RH
some can only inspect type, not segments-left

Oliver Eggert Testing IPv6 Firewalls with ft6 56/ 93

Testing ip6tables – Test 3: Extension Header Chain

Check how the firewall handles packets containing header chains.

default config

3 DSTOPT: forwarded
7 HBH: dropped
7 DSTOPT-HBH: forwarded
7 DSTOPT-DSTOPT: forwarded
3 HBH-HBH: dropped
3 DSTOPT-RH-DSTOPT: forwarded
3 HBH-DSTOPT-RH-HBH: dropped

Oliver Eggert Testing IPv6 Firewalls with ft6 57/ 93

Testing ip6tables – Test 3: Extension Header Chain

Cause:

Packets are directed at allowed port 80
ip6tables does not check the DSTOPT or HBH

Solution:
Use ip6tables-module ipv6header or ipv6headerorder. Check headers in
separate chain. Problems:

Not stateful enough – need to enumerate all possible combinations
Rule for forwarding single HBH didn’t work.
Dropping duplicate DSTOPT-DSTOPT also drops single DSTOPT.

Oliver Eggert Testing IPv6 Firewalls with ft6 58/ 93

Testing ip6tables – Test 3: Extension Header Chain

other firewalls

similar problems
only a Cisco ASA w/ additional IPS-module could detect duplicates.
performance benchmark showed importance:
throughput down to approx. 65 when sending extension headers

Oliver Eggert Testing IPv6 Firewalls with ft6 59/ 93

Testing ip6tables – Test 4: Overlapping Fragments

Check how the firewall handles packets containing fragments.

default config

3 no overlap: forwarded
3 overlap overwriting the port: dropped
3 overlap overwriting the payload: dropped

Oliver Eggert Testing IPv6 Firewalls with ft6 60/ 93

Testing ip6tables – Test 4: Overlapping Fragments

other firewalls

some do not allow fragments at all
some do not recognize overlap

Oliver Eggert Testing IPv6 Firewalls with ft6 61/ 93

Testing ip6tables – Tests 5 & 6: Tiny Fragments

Check how the firewall handles “Tiny Fragments” (upper layer header not present
in first fragment). Check if timeout of 60s is handled correclty

default config

7 port 80 in second fragment (allowed): dropped
3 port 22 in second fragment (forbidden): dropped
7 last fragment arriving after 59 seconds: dropped
3 last fragment arriving after 61 seconds: dropped

Oliver Eggert Testing IPv6 Firewalls with ft6 62/ 93

Testing ip6tables – Tests 5 & 6: Tiny Fragments

Problem:

ip6tables appears to drop all tiny fragments
checking for timeout is not useful.
no solution was found, no improved config.

other firewalls

similar results

Oliver Eggert Testing IPv6 Firewalls with ft6 63/ 93

Testing ip6tables – Test 7: Excessive HBH/DSTOPT Options

Check how the firewall handles extension headers containing duplicate options.

default config

3 HBH with Jumbo-PadN-Jumbo: dropped
7 DSTOPT with Jumbo-PadN-Jumbo: forwarded
7 HBH with RouterAlert-Pad1-RouterAlert: forwarded
7 DSTOPT with RouterAlert-Pad1-RouterAlert: forwarded
7 HBH with QuickStart-TunnelEncapLimit-PadN-QuickStart: forwarded
7 DSTOPT with QuickStart-TunnelEncapLimit-PadN-QuickStart: forwarded
3 HBH with RPL-PadN-RPL: dropped
7 DSTOPT with RPL-PadN-RPL: forwarded

Oliver Eggert Testing IPv6 Firewalls with ft6 64/ 93

Testing ip6tables – Test 7: Excessive HBH/DSTOPT Options

Cause:
not really sure...

Solution:

Use ip6tables-modules hbh and dst to check for payload of these headers.
enumerate all possible combinations
example config for dropping second combination:
ip6tables -A FORWARD -m dst --dst-opts 194,1,194 -j DROP

Oliver Eggert Testing IPv6 Firewalls with ft6 65/ 93

Testing ip6tables – Test 7: Excessive HBH/DSTOPT Options

improved config

3 HBH with Jumbo-PadN-Jumbo: dropped
3 DSTOPT with Jumbo-PadN-Jumbo: dropped
3 HBH with RouterAlert-Pad1-RouterAlert: dropped
3 DSTOPT with RouterAlert-Pad1-RouterAlert: dropped
3 HBH with QuickStart-TunnelEncapLimit-PadN-QuickStart: dropped
3 DSTOPT with QuickStart-TunnelEncapLimit-PadN-QuickStart: dropped
3 HBH with RPL-PadN-RPL: dropped
3 DSTOPT with RPL-PadN-RPL: dropped

Oliver Eggert Testing IPv6 Firewalls with ft6 66/ 93

Testing ip6tables – Test 7: Excessive HBH/DSTOPT Options

other firewalls

most were unable to inspect contents of options
some were only able to inspect the first option

Oliver Eggert Testing IPv6 Firewalls with ft6 67/ 93

Testing ip6tables – Test 8: PadN Covert Channel

Check how the firewall handles packets containing a PadN-option. It’s payload
should be all zeroes.

default config

7 HBH with PadN-payload = 0: dropped
3 HBH with PadN-payload ̸= 0: dropped
3 DSTOPT with PadN-payload = 0: forwarded
7 DSTOPT with PadN-payload ̸= 0: forwarded

Oliver Eggert Testing IPv6 Firewalls with ft6 68/ 93

Testing ip6tables – Test 8: PadN Covert Channel

Cause:

ip6tables doesn’t seem to check payload at all
no solution found, no improved config.

other firewalls

same result

Oliver Eggert Testing IPv6 Firewalls with ft6 69/ 93

Testing ip6tables – Test 9: Address Scopes

Check how the firewall handles packets originating from an inappropriate scope.

default config

3 multicast: all dropped
3 link-local: all dropped

other firewalls

same result

Oliver Eggert Testing IPv6 Firewalls with ft6 70/ 93

Testing ip6tables – conclusion

test improved rules
ICMPv6 Filtering 3

Routing Header 3

Header Chain 7

Overlapping Fragments 3

Tiny IPv6 Fragments 7

Excessive HBH Options 31

PadN Covert Channel 7

Address Scope 3

1not very elegant
Oliver Eggert Testing IPv6 Firewalls with ft6 71/ 93

Outline

1 The beginnings
2 Design of ft6
3 Tests done by ft6
4 Live Demo
5 Testing ip6tables
6 Pitfalls
7 (optionally: writing your own tests)

Oliver Eggert Testing IPv6 Firewalls with ft6 72/ 93

Pitfalls

ideal world scenario: tests performed automatically
mismatch between rfc’s intent, your setup, firewall capabilities
ft6’s results may be misleading in some cases

Oliver Eggert Testing IPv6 Firewalls with ft6 73/ 93

Pitfalls

Example:
ICMPv6 non-filtered messages include
Packet Too Big, Time Exceeded and Parameter Problem
in our tests: were dropped by some firewalls, marked red in ft6
responses to some previous malformed packet
ft6 doesn’t send the previous packet
firewall more capable than assumed

Oliver Eggert Testing IPv6 Firewalls with ft6 74/ 93

Pitfalls

how would you fix that?
you can’t (reliably)
too many edge-cases, to many differences across vendors
problem remains: what’s the result of that ICMP test?

Oliver Eggert Testing IPv6 Firewalls with ft6 75/ 93

Pitfalls

another example: Routing Header
decision to drop or forward depends upon value of segments-left field.
some firewalls were unable to inspect the field.
all or nothing
firewall less capable than assumed
yet: dropping valid RH is arguably better than forwarding invalid RH
how do we reflect that in ft6?

Oliver Eggert Testing IPv6 Firewalls with ft6 76/ 93

Pitfalls

don’t focus too hard on rfc-conformity
if a result is not in accordance with rfc but "more secure":
⇒ no longer red
can’t make it green:
⇒ for example: dropping all RH, kills Mobile-IPv6 feature

Oliver Eggert Testing IPv6 Firewalls with ft6 77/ 93

Pitfalls

results:
more yellow, longer explanations
more interpretation required
shows problems of IPv6. Too many what-ifs

Oliver Eggert Testing IPv6 Firewalls with ft6 78/ 93

Outline

1 The beginnings
2 Design of ft6
3 Tests done by ft6
4 Live Demo
5 Testing ip6tables
6 Pitfalls
7 (optionally: writing your own tests)

Oliver Eggert Testing IPv6 Firewalls with ft6 79/ 93

Writing your own test

Example: build own test, to see if packets containing the string "randomword"can
traverse the firewall. Requires three steps:

1 create a class for your test
2 craft packets in the prepare method
3 register your test with the application

(More detailed in ft6’s documentation)

Oliver Eggert Testing IPv6 Firewalls with ft6 80/ 93

Writing your own tests – packet handling with scapy

handling network packets is usually messy
binary protocols
accessing individual flags invovles bitshifting or bitmasking

sending and receiving is error-prone, too
scapy does all that for you and is human readable.
great TAB-completion

Oliver Eggert Testing IPv6 Firewalls with ft6 81/ 93

Writing your own tests – packet handling with scapy

Oliver Eggert Testing IPv6 Firewalls with ft6 82/ 93

Writing your own tests – packet handling with scapy

Oliver Eggert Testing IPv6 Firewalls with ft6 83/ 93

Writing your own tests – packet handling with scapy

Oliver Eggert Testing IPv6 Firewalls with ft6 84/ 93

Writing your own tests – packet handling with scapy

Oliver Eggert Testing IPv6 Firewalls with ft6 85/ 93

Writing your own tests – packet handling with scapy

Oliver Eggert Testing IPv6 Firewalls with ft6 86/ 93

Writing your own tests

Step 1: Create a class for your test

class TestRandomWord(Test):
def __init__(self, id, name, description, test_settings, app):

super(TestRandomWord, self).__init__(id, name, description,
test_settings, app)

(copy-paste, change the name)

Oliver Eggert Testing IPv6 Firewalls with ft6 87/ 93

Writing your own tests

Step 2: Craft packets in the prepare-method

def prepare(self):
e = Ether(dst=self.test_settings.router_mac)
ip = IPv6(dst=self.test_settings.dst, src=self.test_settings.src)
udp= UDP(dport=self.test_settings.open_port, sport=12345)

p = Ft6Packet(e/ip/udp/Raw("randomword"))
p.setValid()
p.setDescription("A valid packet containing a random word")
p.ifDropped("This violates rfc #23")
self.addPacket(p)

Oliver Eggert Testing IPv6 Firewalls with ft6 88/ 93

Writing your own tests

Step 2: Craft packets in the prepare-method

p = Ft6Packet(e/ip/udp/Raw("otherword"))
p.setInvalid()
p.setDescription("An invalid packet containing some other word")
p.ifForwarded("This violates rfc #42")
self.addPacket(p)

Oliver Eggert Testing IPv6 Firewalls with ft6 89/ 93

Writing your own tests

That’s it!
ft6 will send each packet that has been added like this
and add results according to the packet’s state

Oliver Eggert Testing IPv6 Firewalls with ft6 90/ 93

Writing your own tests

Step 3: register your test

create test classes, store them in the dictionary
so they can later be called by their id
tICMP = TestICMP(1, "ICMPv6 Filtering", "The ICMP Test",

self.test_settings, app)
self.registerTest(tICMP)

...

tRandomWord = TestRandomWord(42, "My Random Word Test",
"Tests for Random Words", self.test_settings, app)

self.registerTest(tRandomWord)

Oliver Eggert Testing IPv6 Firewalls with ft6 91/ 93

Wrap up

a lot of things to take care of
don’t trust the vendors
also do performance, link-local tests
ft6 is a work in progress
lots of improvement could be done
better results
more tests

Oliver Eggert Testing IPv6 Firewalls with ft6 92/ 93

Thank You! Questions?
get ft6 from: https://github.com/olivereggert/ft6
more info on the project: www.idsv6.de

Oliver Eggert Testing IPv6 Firewalls with ft6 93/ 93

https://github.com/olivereggert/ft6
www.idsv6.de

	The beginnings
	Design of ft6
	Tests done by ft6
	Test 1: ICMPv6 filtering
	Test 2: Routing Header
	Test 3: Chained Extension Headers
	Test 4: Overlapping Fragments
	Tests 5 & 6: Tiny IPv6 Fragments
	Test 7: Excessive HBH/DSTOPT Options
	Test 8: PadN Covert Channel
	Test 9: Address Scopes

	Live Demo
	Testing ip6tables
	Test 1: ICMPv6 Filtering
	Test 2: Routing Header
	Test 3: Extension Header Chain
	Test 4: Overlapping Fragments
	Tests 5 & 6: Tiny Fragments
	Test 7: Excessive HBH/DSTOPT Options
	Test 8: PadN Covert Channel
	Test 9: Address Scopes
	conclusion

	Pitfalls
	(optionally: writing your own tests)
	packet handling with scapy

