

How to Securely Operate an IPv6 Network

Eric Vyncke, evyncke@cisco.com

@evyncke

OPSEC Internet-Draft Intended status: Informational Expires: April 25, 2014 K. Chittimaneni Google M. Kaeo Double Shot Security E. Vyncke Cisco Systems October 22, 2013

1

Operational Security Considerations for IPv6 Networks draft-ietf-opsec-v6-04

Foreword

-

- All topics common to IPv4/IPv6 are unchanged:
 - Physical security
 - Role Base Access Control

 I took the liberty to include Cisco configuration (as it may be useful for you) but I will not detail them

Agenda

- Management Plane
- Control Plane
 - Routing Information
 - Neighbor Discovery
 - Control Plane Protection
- Data Plane
 - Anti-spoofing
 - Access Control List
 - Tunnel loops
- Telemetry
- Forensic
- Summary

Management Plane

Management over IPv6

- SSH, syslog, SNMP, NetFlow, RADIUS all work over IPv6
- Dual-stack management plane
 - More resilient: works even if one IP version is down
 - More exposed: can be attacked over IPv4 and IPv6
- As usual, infrastructure ACL is your friend (more to come) as well as out-ofband management
- So, protect all SNMP, SSH access from untrusted interfaces

Control Plane: Routing Protocols

Preventing IPv6 Routing Attacks Protocol Authentication

- BGP, IS-IS, EIGRP no change:
 - An MD5 authentication of the routing update
- OSPFv3 originally has changed and pulled MD5 authentication from the protocol and instead rely on transport mode IPsec (for authentication and confidentiality)
 - But see RFC 6506 (not yet widely implemented)
- IPv6 routing attack best practices
 - Use traditional authentication mechanisms on BGP and IS-IS
 - Use IPsec to secure protocols such as OSPFv3

BGP Route Filters

- Pretty obvious for customer links
- For peering, a relaxed one

```
ipv6 prefix-list RELAX deny 3ffe::/16 le 128
ipv6 prefix-list RELAX deny 2001:db8::/32 le 128
ipv6 prefix-list RELAX permit 2001::/32
ipv6 prefix-list RELAX deny 2001::/32 le 128
ipv6 prefix-list RELAX permit 2002::/16
ipv6 prefix-list RELAX deny 2002::/16 le 128
ipv6 prefix-list RELAX deny 0000::/8 le 128
ipv6 prefix-list RELAX deny fe00::/9 le 128
ipv6 prefix-list RELAX deny ff00::/8 le 128
```

Source: http://www.space.net/~gert/RIPE/ipv6-filters.html

Link-Local Addresses vs. Global Addresses

- Link-Local addresses, fe80::/10, (LLA) are isolated
 - Cannot reach outside of the link
 - Cannot be reached from outside of the link ©
 - LLA can be configured statically (not the EUI-64 default) to avoid changing neighbor statements when changing MAC

```
interface FastEthernet 0/0
```

ipv6 address fe80::1/64 link-local

OPsec Working Group	M. Behringer
Internet-Draft	E. Vyncke
Intended status: Informational	Cisco
Expires: July 10, 2014	January 6, 2014

Using Only Link-Local Addressing Inside an IPv6 Network draft-ietf-opsec-lla-only-06

LLA-Only Pros and Cons

Benefits:

- no remote attack against your infrastructure links: implicit infrastructure ACL*
- Smaller routing table (links do not appear)
- Simpler configuration
- Easier to renumber

Special case for IXP:

 Usually a specific /64 which is not routed => uRPF will drop ICMP generated (PMTUd) by routers in the IXP

Cons:

- LLA-only on the IXP interfaces => ICMP are generated from a non IXP interface

need to provision loopback for:

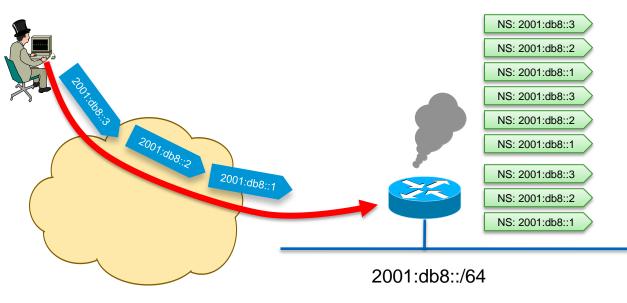
ICMP for Traceroute

SNMP/NetFlow/syslog/ ...

ICMP for PMTUD

No interface ping

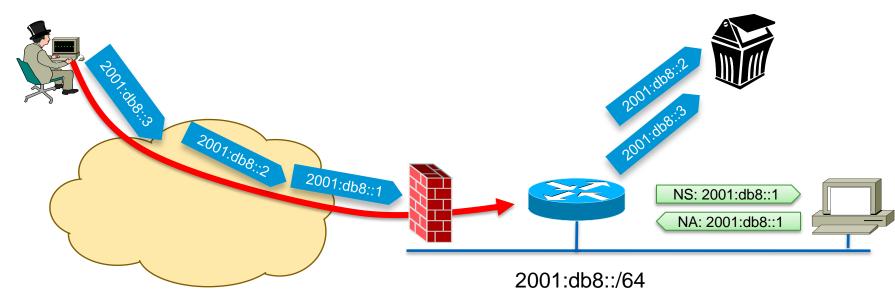
Develte


^{*:} loopbacks are still routable/reachable

Control Plane: Neighbor Discovery

Scanning Made Bad for CPU Remote Neighbor Cache Exhaustion RFC 6583

- Potential router CPU/memory attacks if aggressive scanning
 - Router will do Neighbor Discovery... And waste CPU and memory
- Local router DoS with NS/RS/...


Mitigating Remote Neighbor Cache Exhaustion

- Built-in rate limiter with options to tune it
 - Since 15.1(3)T: ipv6 nd cache interface-limit
 - Or IOS-XE 2.6: ipv6 nd resolution data limit
 - Destination-guard is part of First Hop Security phase 3
 - Priority given to refresh existing entries vs. discovering new ones (RFC 6583)
- Using a /64 on point-to-point links => a lot of addresses to scan!
 - Using /127 could help (RFC 6164)
- Internet edge/presence: a target of choice
 - Ingress ACL permitting traffic to specific statically configured (virtual) IPv6 addresses only
- Using infrastructure ACL prevents this scanning
 - iACL: edge ACL denying packets addressed to your routers
 - Easy with IPv6 because new addressing scheme can be done ©

http://www.insinuator.net/2013/03/ipv6-neighbor-cache-exhaustion-attacks-risk-assessment-mitigation-strategies-part-1

Simple Fix for Remote Neighbor Cache Exhaustion

- Ingress ACL allowing only valid destination and dropping the rest
- NDP cache & process are safe
- Requires DHCP or static configuration of hosts

ARP Spoofing is now NDP Spoofing: Threats

- ARP is replaced by Neighbor Discovery Protocol
 - Nothing authenticated
 - Static entries overwritten by dynamic ones
- Stateless Address Autoconfiguration
 - rogue RA (malicious or not)
 - All nodes badly configured
 - DoS
 - Traffic interception (Man In the Middle Attack)
- Attack tools exist (from THC The Hacker Choice)
 - Parasit6

. . .

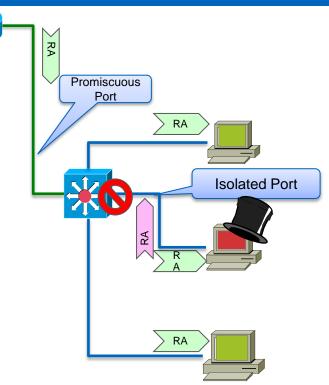
- Fakerouter6

© 2014 Cisco and/or its affiliates. All rights reserved.

Cisco Public

ARP Spoofing is now NDP Spoofing: Mitigation

GOOD NEWS: dynamic ARP inspection for IPv6 is available


- First phase (Port ACL & RA Guard) available since Summer 2010
- Second phase (NDP & DHCP snooping) starting to be available since Summer 2011
- <u>http://www.cisco.com/en/US/docs/ios/ipv6/configuration/guide/ip6-first_hop_security.html</u>
- (Kind of) GOOD NEWS: Secure Neighbor Discovery
 - SeND = NDP + crypto
 - IOS 12.4(24)T But not in Windows Vista, 2008 and 7, Mac OS/X, iOS, Android

Other GOOD NEWS:

- Private VLAN works with IPv6
- Port security works with IPv6
- IEEE 801.X works with IPv6 (except downloadable ACL)

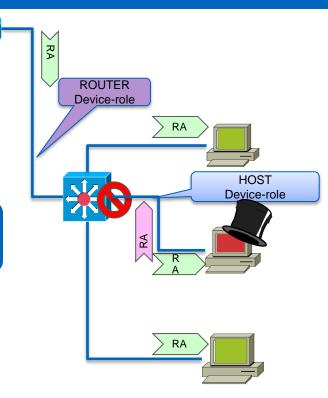
Mitigating Rogue RA: Host Isolation

- Prevent Node-Node Layer-2 communication by using:
 - Private VLANs (PVLAN) where nodes (isolated port) can only contact the official router (promiscuous port)
 - WLAN in 'AP Isolation Mode'
 - 1 VLAN per host (SP access network with Broadband Network Gateway)
- Link-local multicast (RA, DHCP request, etc) sent only to the local official router: no harm
- Can break DAD
 - Advertise the SLAAC prefix without the on-link bit to force router to do 'proxy-ND'

ZK

First Hop Security: RAguard since 2010 RFC 6105

Port ACL blocks all ICMPv6 RA from hosts interface FastEthernet0/2 ipv6 traffic-filter ACCESS_PORT in access-group mode prefer port


RA-guard lite (12.2(33)SXI4 & 12.2(54)SG): also dropping all RA received on this port interface FastEthernet0/2 Can also enforce

ipv6 nd raguard access-group mode prefer port

RA-guard (12.2(50)SY, 15.0(2)SE) ~

ipv6 nd raguard policy HOST device-role host ipv6 nd raguard policy ROUTER device-role router ipv6 nd raguard attach-policy HOST vlan 100 interface FastEthernet0/0

ipv6 nd raguard attach-policy ROUTER

MTU, prefix, ... In

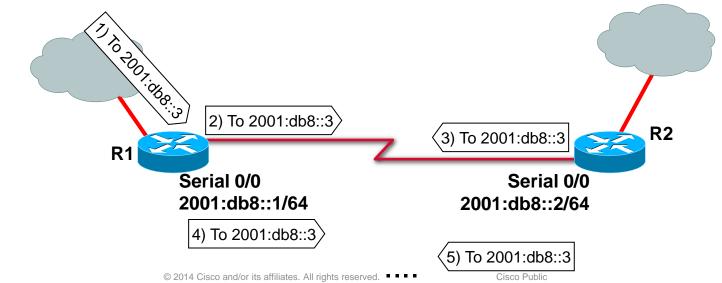
RA

Control Plane Protection

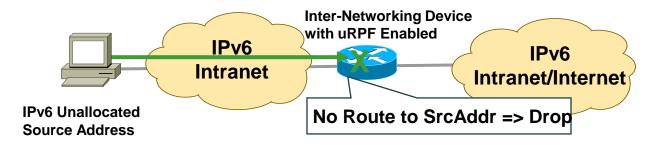
Control Plane Policing for IPv6 Protecting the Router CPU

- Against DoS with NDP, Hop-by-Hop, Hop Limit Expiration...
- See also RFC 6192

For Your


Reference

Data Plane


DoS Example Ping-Pong over Physical Point-to-Point

- Same as in IPv4, on real P2P without NDP, if not for me, then send it on the other side... Could produce looping traffic
- Classic IOS and IOS-XE platforms implement RFC 4443 so this is not a threat
 - Except on 76xx see CSCtg00387 (tunnels) and few others
 - IOS-XR see CSCsu62728
 - Else use /127 on P2P link (see also RFC 6164)
 - Or use infrastructure ACL or only link-local addresses

IPv6 Bogon and Anti-Spoofing Filtering

- IPv6 nowadays has its bogons:
 - <u>http://www.team-cymru.org/Services/Bogons/fullbogons-ipv6.txt</u>
- Every network should implement two forms of anti-spoofing protections:
 - Prevent spoofed addresses from entering the network
 - Prevent the origination of packets containing spoofed source addresses
- Anti-spoofing in IPv6 same as IPv4
 - => Same technique for single-homed edge= uRPF

Bogons Filtering


- Detailed & updated list at:
 - <u>http://www.team-cymru.org/Services/Bogons/fullbogons-ipv6.txt</u>
- Or simpler but more relaxed

```
ipv6 access-list NO BOGONS
    remark Always permit ICMP unreachable (Path MTU Discovery & co)
   permit icmp any any unreachable
    remark Permit only large prefix blocks from IANA
   permit ip 2001::/16 any
   permit ip 2002::/16 any
   permit ip 2003::/18 any
   permit ip 2400::/12 any
   permit ip 2600::/10 any
   permit ip 2800::/12 any
    permit ip 2a00::/12 any
    permit ip 2c00::/12 any
   Remark implicit deny at the end (but see later)
```

Source: http://www.iana.org/assignments/ipv6-unicast-address-assignments/ipv6-unicast-address-assignments.xmi

Remote Triggered Black Hole

- RFC 5635 RTBH is easy in IPv6 as in IPv4
- uRPF is also your friend for blackholing a source
- RFC 6666 has a specific discard prefix
 - 100::/64

http://www.cisco.com/web/about/security/intelligence/ipv6_rtbh.html

Source: Wikipedia Commons

Parsing the Extension Header Chain

- Finding the layer 4 information is not trivial in IPv6
 - Skip all known extension header
 - Until either known layer 4 header found => MATCH
 - Or unknown extension header/layer 4 header found... => NO MATCH

IPv6 hdr	НорВуНор	Routing	AH	ТСР	data
IPv6 hdr	НорВуНор	Routing	AH	Unknown L4	???

IOS IPv6 Extended ACL

- Can match on
 - Upper layers: TCP, UDP, SCTP port numbers, ICMPv6 code and type
 - TCP flags SYN, ACK, FIN, PUSH, URG, RST
 - Traffic class (only six bits/8) = DSCP, Flow label (0-0xFFFFF)
- IPv6 extension header
 - routing matches any RH, routing-type matches specific RH
 - mobility matches any MH, mobility-type matches specific MH
 - dest-option matches any destination options
 - auth matches AH
 - hbh matches hop-by-hop (since 15.2(3)T)
- fragments keyword matches
 - Non-initial fragments
- undetermined-transport keyword does not match if
 - TCP/UDP/SCTP and ports are in the fragment
 - ICMP and type and code are in the fragment
 - Everything else matches (including OSPFv3, ...)
 - Only for deny ACE

CRITICAL without this, there is a way to bypass STATELESS ACL!

Check your platform & release as your mileage can vary... Cisco Public

© 2014 Cisco and/or its affiliates. All rights reserved.

Looping Attack Between 6to4 and ISATAP (RFC 6324)

 1. Spoofed packet
 5: 2001:db8::200:5efe:c000:201

 D: 2002:c000:202::1
 0

 Image: Signal state of the state of the

Repeat until Hop Limit == 0

- Root cause
 - Same IPv4 encapsulation (protocol 41)
 - Different ways to embed IPv4 address in the IPv6 address
- ISATAP router:
 - accepts 6to4 IPv4 packets
 - Can forward the inside IPv6 packet back to 6to4 relay
- Symmetric looping attack exists

Mitigation:

- Easy on ISATAP routers: deny packets whose IPv6 is its 6to4
- Less easy on 6to4 relay: block all ISATAP-like local address?
- Good news: not so many open ISATAP routers on the Internet
- Do not announce the 6to4 relay address outside of your AS and accepts protocol-41 packets only from your AS

6rd Relay Security Issues

- 6rd is more constrained than 6to4, hence more secure
- IPv4 ACL (or IPv4 routing) can limit the 6rd packets to the 6rd domain within the ISP
 - No more open relay
 - No more looping attacks

IPv6 security is similar to IPv4 security No excuse to operate an insecure IPv6 network

Telemetry

Available Tools

- Usually IPv4 telemetry is available
- SNMP MIB
 - Not always available yet on Cisco gears
- Flexible Netflow for IPv6
 - Available in : 12.4(20)T, 12.2(33)SRE
 - Public domain tools: nfsen, nfdump, nfcpad...

IPv6 MIB Implementation

	IP FWD (ROUTES)	IP	ICMP	ТСР	UDP	
Original IPv4 only	2096		2011	2012	2013	
IPv6 only	2465	2466	2452	2454		
Protocol Version Independent (PVI)	rfc2096-update = 4292	rfc2011-update = 4293 = IP-MIB				
				rfc2012-update = 4022	rfc2013-update = 4113	

IPv4/IPv6 stats can be monitored from CLI "show interface accounting" on most platforms
RFC 4292 and 4293 – Interface Stats table are added, also required HW support
Tunnel MIB (RFC 4087)

Using SNMP to Read Interfaces Traffic


```
evyncke@charly:~$ snmpwalk -c secret -v 1 udp6:[2001:db8::1] -Cw 70 -m IP-MIB
ipNetToPhysicalPhysAddress
SNMP table: IP-MIB::ipIfStatsTable
 index ipIfStatsInReceives ipIfStatsHCInReceives ipIfStatsInOctets
 ipv4.1
                     683929
                                                           55054803
                                                ?
 ipv4.2
                    1123281
                                                2
                                                          107467461
 ipv6.1
                    152612
                                                           17261398
                                                ?
 ipv6.2
                   15083935
                                                ?
                                                         2131680450
evyncke@charly:~$ snmpwalk -c secret -v 1 udp6:[2001:db8::1] -Cw 70 ifTabl
SNMP table: IF-MIB::ifTable
index ifIndex
                      ifDescr
                                         ifType ifMtu
                                                         ifSpeed
             1 FastEthernet0/0
                                ethernetCsmacd 1500 10000000
             2 FastEthernet0/1
                                 ethernetCsmacd 1500
                                                       100000000
```

Using SNMP to Read IPv4/IPv6 Neighbors Cache Reference

```
evvncke@charly:~$ snmpwalk -c secret -v 1 udp6:[2001:db8::1] -m IP-MIB
ipNetToPhysicalPhysAddress
IP-MIB::ipNetToPhysicalPhysAddress.1.ipv4."192.168.0.2" = STRING: 0:13:c4:43:cf:e
IP-MIB::ipNetToPhysicalPhysAddress.1.ipv4."192.168.0.3" = STRING: 0:23:48:2f:93:24
IP-MIB::ipNetToPhysicalPhysAddress.1.ipv4."192.168.0.4" = STRING: 0:80:c8:e0:d4:be
. . .
IP-
MIB::ipNetToPhysicalPhysAddress.2.ipv6."2a:02:05:78:85:00:01:01:02:07:e9:ff:fe:f2:a0:c6
" = STRING: 0:7:e9:f2:a0:c6
IP-
MIB::ipNetToPhysicalPhysAddress.2.ipv6."2a:02:05:78:85:00:01:01:02:20:4a:ff:fe:bf:ff:5f
" = STRING: 0:20:4a:bf:ff:5f
IP-
MIB::ipNetToPhysicalPhysAddress.2.ipv6."2a:02:05:78:85:00:01:01:30:56:da:9d:23:91:5e:ea
" = STRING: 78:ca:39:e2:43:3
. . .
evyncke@charly:~$ snmptable -c secret -v 1 udp6:[2001:db8::1] -Ci -m IP-MIB
```

ipNetToPhysicalTable

Flexible Flow Record: IPv6 Key Fields

IPv6		Routing	Transport		
IP (Source or	Devide end Gine	Destination AS	Destination Port	TCP Flag: ACK	
Destination)	Payload Size	Peer AS	Source Port	TCP Flag: CWR	
Prefix (Source or	Packet Section	Traffic Index	ICMP Code	TCP Flag: ECE	
Destination)	(Header)	Forwarding Status	ІСМР Туре	TCP Flag: FIN	
Mask (Source or Destination)	Packet Section (Payload)	Is-Multicast	IGMP Type	TCP Flag: PSH	
Minimum-Mask (Source or	DSCP	IGP Next Hop	TCP ACK Number	TCP Flag: RST TCP Flag: SYN	
		BGP Next Hop	TCP Header Length		
Destination)		Flow	TCP Sequence	TCP Flag: URG UDP Message Length UDP Source Port	
Protocol	Extension		Number		
Traffic Class	Hop-Limit	Sampler ID	TCP Window-Size		
Flow Label	Length	Direction	TCP Source Port		
Option Header	Next-header	Interface	TCP Destination	UDP Destination	
Header Length	Version	Input	Port	Port	
Payload Length		Output	TCP Urgent Pointer		

Flexible Flow Record: IPv6 Extension Header Ma

Bits 11-31	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Res	ESP	AH	PAY	DST	HOP	Res	UNK	FRA0	RH	FRA1	Res

- FRA1: Fragment header not first fragment
- RH: Routing header
- FRA0: Fragment header First fragment
- UNK: Unknown Layer 4 header (compressed, encrypted, not supported)
- HOP: Hop-by-hop extension header
- DST: Destination Options extension header
- PAY: Payload compression header
- AH: Authentication header
- ESP: Encapsulating Security Payload header
- Res: Reserved

Netflow Reverse Usage

- Scanning an IPv6 network is impossible (address space too large)
- How can we run a security audit?
- Easy
 - Get all IPv6 addresses from Netflow
 - Note: scanning link-local addresses requires layer-2 adjacency, i.e.
 - Ping6 ff02::1

Vulnerability Scanning in a Dual-Stack World

- Finding all hosts:
 - Address enumeration does not work for IPv6
 - Need to rely on DNS or NDP caches or NetFlow
- Vulnerability scanning
 - IPv4 global address, IPv6 global address(es) (if any), IPv6 link-local address
 - Some services are single stack only (currently mostly IPv4 but who knows...)
 - Personal firewall rules could be different between IPv4/IPv6
- IPv6 vulnerability scanning MUST be done for IPv4 & IPv6 even in an IPv4-only network
 - IPv6 link-local addresses are active by default

Forensic

Multiple Facets to IPv6 Addresses

- Every host can have multiple IPv6 addresses simultaneously
 - Need to do correlation!
 - Alas, no Security Information and Event Management (SIEM) supports IPv6
 - Usually, a customer is identified by its /48 \odot
- Every IPv6 address can be written in multiple ways
 - 2001:0DB8:0BAD::0DAD
 - 2001:DB8:BAD:0:0:0:0:DAD
 - 2001:db8:bad::dad (this is the canonical RFC 5952 format)
 - => Grep cannot be used anymore to sieve log files...

Perl Grep6


```
#!/usr/bin/perl -w
use strict ;
use Socket ;
use Socket6 ;
my (@words, $word, $binary address, $address) ;
$address = inet pton AF INET6, $ARGV[0] ;
if (! $address) { die "Wrong IPv6 address passed as argument" ; }
## go through the file one line at a time
while (my $line = <STDIN>) {
          @words = split /[ \n\(\)\[\]]/, $line ;
          foreach $word (@words) {
                    $binary address = inet pton AF INET6, $word ;
                    if ($binary address and $binary address eq $address) {
                              print $line ;
                              next :
```

How to Find the MAC Address of an IPv6 Address?

Easy if EUI-64 format as MAC is embedded -2001:db8::0226:bbff:fe4e:9434 - (need to toggle bit 0x20 in the first MAC byte = U/L) 00:26:bb:4e:94:34

How to Find the MAC Address of an IPv6 Address?

- DHCPv6 address or prefix... the client DHCP Unique ID (DUID) can be
 - MAC address: trivial
 - Time + MAC address: simply take the last 6 bytes
 - Vendor number + any number: no luck... next slide can help
 - No guarantee of course that DUID includes the real MAC address.

```
# show ipv6 dhcp binding
Client: FE80::225:9CFF:FEDC:7548
DUID: 00010001000000A00259CDC7548
Username : unassigned
Interface : FastEthernet0/0
IA PD: IA ID 0x0000007B, T1 302400, T2 483840
Prefix: 2001:DB8:612::/48
preferred lifetime 3600, valid lifetime 3600
expires at Nov 26 2010 01:22 PM (369)
```

DHCPv6 in Real Live...

- Not so attractive ☺
- Only supported in Windows Vista, and Windows 7, Max OS/X Lion
 - Not in Linux (default installation), ...
- Windows Vista does not place the used MAC address in DUID but any MAC address of the PC

```
# show ipv6 dhcp binding
Client: FE80::FDFA:CB28:10A9:6DD0
DUID: 0001000110DB0EA6<u>001E33814DEE</u>
Username : unassigned
IA NA: IA ID 0x1000225F, T1 300, T2 480
Address: 2001:DB8::D09A:95CA:6918:967
preferred lifetime 600, valid lifetime
600
expires at Oct 27 2010 05:02 PM (554
```

How to Find the MAC Address of an IPv6 Address?

Last resort... look in the live NDP cache (CLI or SNMP)

<pre>#show ipv6 neighbors 2001:DB8::6DD0</pre>	
IPv6 Address	Age Link-layer Addr State Interface
2001:DB8::6DD0	8 0022.5f43.6522 STALE Fa0/1

- If no more in cache, then you should have scanned and saved the cache...
- EEM can be your friend
- First-Hop Security phase II can generate a syslog event on each new binding
 - ipv6 neighbor binding logging

Summary

Our journey...

- Management Plane
- Control Plane
 - Routing Information
 - Neighbor Discovery
 - Control Plane Protection
- Data Plane
 - Anti-spoofing
 - Access Control List
 - Tunnel loops
- Telemetry
- Forensic
- Summary

Key Takeaway /1

- Management plane
 - Protect management plane with access-class
- Control plane
 - Authenticate IGP
 - Consider the use of link-local on P-P links?
 - Mitigate rogue-RA with RA-guard
 - Configure control plane policing
- Data plane
 - Beware of ping-pong on not /127 real P2P link
 - Apply anti-spoofing, anti-bogons
 - Disable source routing
 - Use ACL where applicable
 - ACL must permit NDP

Key Takeaway /2

- Telemetry
 - SNMP MIB and Netflow v9 are your friends
 - Netflow can be used for inventory

Forensic

- Multiple addresses per node, multiple ways to write an IPV6 address
- Finding MAC address from IPv6:
 - EUI-64,
 - DHCPv6 (not so trivial)
 - else periodic NDP cache dumps...
- Lawful Interception
 - implemented, missing mediation device

Questions and Answers?

#